Chapter 9

Multimedia Operating Systems

9.1 Introduction

The operating system is the shield of the computer hardware against all software
components. It provides a comfortable environment for the execution of programs,
and it ensures effective utilization of the computer hardware. The operating system
offers various services related to the essential resources of a computer: CPU, main
memory, storage and all input and output devices.

For the processing of audio and video, multimedia application demands that hu-
mans perceive these media in a natural, error-free way. These continuous media
data originate at sources like microphones, cameras and files. From these sources,
the data are transferred to destinations like loudspeakers, video windows and files -
located at the same computer or at a remote station. On the way from source to
sink, the digital data are processed by at least some type of move, copy or trans-
mit operation. In this data manipulation process there are always many resoburces
which are under the control of the operating system. The integration of discrete
and continuous multimedia data demands additional services from many operating
system components.,

The major aspect in this context is real-time processing of continuous media data.
Process management must take into account the timing requirements imposed by the
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handling of multimedia data. Appropriate scheduling methods should be applied.
In contrast to the traditional real-time operating systems, multimedia operating
systems also have to consider tasks without hard timing restrictions under the aspect
of fairness. |

To obey timing requirements, single components are conceived as resources that
are reserved prior to execution. This concept of resource reservation has to cover
all resources on a data path, i.e., all resources that deal with continuous media.
It also may affect parts of the application that process continuous media data.
In distributed systems, for example, resource management also comprises network
capacity [HVWW94).

The communication and synchronization between single processes must meet the
restrictions of real-time requirements and timing relations among different media.
The main memory is available as a shared resource to single processes.

In multimedia systems, memory management has to provide access to data with a
guaranteed timing delay and efficient data manipulation functions. For instance,
physical data copy operations must be avoided due to their negative impact on per-
formance; buffer management operations (such as are known from communication
systems) should be used.

Database maoagement is an important component in multimedia systems. How-
ever, database management abstracts the details of storing data on secondary media
storage. Therefore, database management should rely on file management services
provided by the multimedia operating system to access single files and file systems.
For example, the incorporation of a CD-ROM XA file system as an integral part of
a multimedia file system allows transparent and guaranteed contjnuous retrieval of
audio and video data to any application using the file system; the database system
is one of those applications. However, database systems often implement their own
access to stored data.

Since the operating system shields devices from applications programs, it must pro-
vide services for device management too. In multimedia systems, the important
issue is the integration of audio and video devices in a similar way to any other
input/output device. The addressing of a camera can be performed similar to the
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addressing of a keyboard in the same system, although most current systems do not
apply this technique.

Product information dealing with operating system extensions for the integration of
multimedia [IBM92c, Win91, DM92, IBM92e, IBM92d] typically provide a detailed
description of application interfaces. In this chapter we will concentrate on the basic
concepts and internal tasks of a multimedia operating system.

As the essential aspect of any multimedia operating system is the notion of real-time,
the following section details this idea in its relationship to multimedia. Subsequently,
the concept of resource management is discussed. The section on process manage-
ment contains a brief presentation of traditional real-time scheduling algorithms.
Further, their suitability and adaptability toward continuous media processing is ex-
amined. The section on file systems outlines disk access algorithms, data placement
and structuring. The subsequent sections illustrate interprocess communication and
synchronization, memory management and device management. This chapter con-
cludes with a discussion of typical system architectures which comprise real-time
and non-real-time environments.

9.2 Real Time

Since the notion of real-time developed independently from research in continuous
media processing, the next section starts with a general definition of real-time.
Later, it shows the relevance of real-time for multimedia data and processes.

9.2.1 The Notion of “Real-Time”

The Germana National Institute for Standardization, DIN, similar to the American
ANSI, defines a real-time process in a computer system as follows: ‘

A real-time process is a process which delivers the results of the pro-
cessing in a given time-span.
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Programs for the processing of data must be available during the entire run-time
of the system. The data may require processing at an a priori known point in
time, or it may be demanded without any previous knowledge [Ger85]. The system
must enforce externally-defined time constraints. Internal dependencies and their
related time limits are implicitly considered. External events occur - depending
on the application - deterministically (at a predetermined instant) or stochastically
(randomly). The real-time system has the permanent task of receiving information
from the environment, occurring spontaneously or in periodic time intervals, and for
delivering it to the environment given certain time constraints.

The main characteristic of real-time systems is the correctness of the computation.
This correctness does not only apply to errorless computation, but also on the time
in which the result is presented [SR89]. Hence, a real-time system can fail not only
if massive hardware or software failures occur, but also if the system is unable to
execute its critical workload in time [KL91). Deterministic behavior of the system
refers to the adherence of time spans defined in advance for the manipulation of
data, i.e., meeting a guaranteed response time. Speed and efficiency are not - as
is often mistakenly assumed — the main characteristics of a real-time system. In
a petrochemical plant, for example, the result is not only unacceptable when the
engine of a vent responds too quickly, but also when it responds with a large delay.
Another example is the playback of a video sequence in a multimedia system. The
result is only acceptable when the video is presented neither too quickly nor too
slowly. Timing and logical dependencies among different related tasks, processed at
the same time, also must be considered. These dependencies refer to both internal
and external restrictions. In the context of multimedia data streams, this refers to
the processing of synchronized audio and video data where the relation between the
two media must be considered.

Deadlines

A deadline represents the latest acceptable time for the presentation of a process-
ing result. It marks the border between normal (correct) and anomalous (failing)
behavior. A real-time system has both hard and soft deadlines.

The term soft deadline is often used for a de.dline which cannot be exactly de-
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termined and which failing to meet does not produce an unacceptable result. We
understand a soft deadline as a deadline which in some cases is missed and may
yet be tolerated as long as (1) not too many deadlines are missed and/or (2) the
deadlines are not missed by much. Such soft deadlines are only reference points with
a certain acceptable tolerance. For example, the start and arrival times of planes
or trains, where deadlines can vary by about ten minutes, can be considered as soft

deadlines.

Whereas soft deadlines may be violated, hard deadlines should never be violated.
A hard deadline violation is a system failure. Hard deadlines are determined by
the physical characteristics of real-time processes. Failing such a deadline results in
costs that can be measured in terms of money (e.g., inefficient use of raw materials
in a process control system), or human and environmental terms (e.g., accidents due
to untimely control in a nuclear power plant or fly-by-wire avionics systems) [Jef90].

Characteristics of Real Time Systems

The necessity of deterministic and predictable behavior of real-time systems requires
processing guarantees for time-critical tasks. Such guarantees cannot be assured
for events that occur at random intervals with unknown arrival times, processing
requirements or deadlines. Further, all guarantees are valid only under the premise
that no processing machine collapses during the run-time of real-time processes. A
real-time system is distinguished by the following features (c.f. [SR89]):

e Predictably fast response to time-critical events and accurate timing informa-
tion. For example, in the control system of a nuclear power plant, the response
to a malfunction must occur within a well-defined period to avoid a potential
disaster.

¢ A high degree of schedulability. Schedulability refers to the degree of resource
utilization at which, or below which, the deadline of each time-critical task
can be taken into account.

e Stability under transient overload. Under system overload, the processing
of critical tasks must be ensured. These critical tasks are vital to the basic
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functionality provided by the system.

Management of manufacturing processes and the control of military systems are
the main application areas for real-time systems. Such process control systems are
responsible for real-time monitoring and control. Real-time systems are also used as
command and control systems in fly-by-wire aircraft, automobile anti-lock braking
systems and the control of nuclear power plants [KL91]. New application areas
for real-time systems include computer conferencing and multimedia in general, the
topic of our work.

9.2.2 Real Time and Multimedia

Audio and video data streams consist of single, periodically changing values of con-
tinuous media data, e.g., audio samples or video frames. Each Logical Data Unit
(LDU) must be presented by a well-determined deadline. Jitter is only allowed be-
fore the final presentation to the user. A piece of music, for example, must be played
back at a constant speed. To fulfill the timing requirements of continuous media, the
operating system must use real-time scheduling techniques. These techniques must
be applied to all system resources involved in the continuous media data processing,
i.e., the entire end-to-end data path is involved. The CPU is just one of these re-
sources — all components must be considered including main memory, storage, I/0
devices and networks.

The real-time requirements of traditional real-time scheduling techniques (used for
command and control systems in application areas such as factory automation or
aircraft piloting) have a hjgh.jdema.nd for security and fault-tolerance. The require-
ments derived from these demands somehow counteract real-time scheduling efforts
applied to continuous media. Multimedia systems which are not used in traditional
real-time scenarios have different (in fact, more favorable) real-time requirements:

o The fault-tolerance requirements of multimedia systems are usually less strict
than those of real-time systems that have a direct physical impact. The short
time failure of a continuous media system will not directly lead to the destruc-
tion of technical equipment or constitute a threat to human life. Please note



9.2. REAL TIME 231

that this is a general statement which does not always apply. For example,
the support of remote surgery by video and audio has stringent delay and
correctness requirements.

¢ For many multimedia system applications, missing a deadline is not a severe
failure, although it should be avoided. It may even go unnoticed, e.g., if an
uncompressed video frame (or parts of it) is not available on time it can simply
be omitted. The viewer will hardly notice this omission, assuming it does not
happen for a contiguous sequence of frames. Audio requirements are more
stringent because the human ear is more sensitive to audio gaps than the
human eye is to video jitter.

o A sequence of digital continuous media data is the result of periodically sam-
pling a sound or image signal. Hence, in processing the data units of such a
data sequence, all time-critical operations are periodic. Schedulability consid-
erations for periodic tasks are much easier than for sporadic ones [Mok84].

o The bandwidth demand of continuous media is not always that stringent;
it must not be a priori fixed, but it may eventually be lowered. As some
compression algorithms are capable of using different compression ratios -
leading to different qualities — the required bandwidth can be negotiated. If
not enough bandwidth is available for full quality, the application may also
accept reduced quality (instead of no service at all). The quality may also be
adjusted dynamically to the available bandwidth, e.g., by changing encoding
parameters. This is known as scalable video.

In a traditional real-time system, timing requirements result from the physical char-
acteristics of the technical process to be controlled, i.e., they are provided exter-
nally. Some applications must meet external requirements too. A distributed music
rehearsal is a futuristic example: music played by one musician on an instrument
connected to his/her workstation must be made available to all other members of
the orchestra within a few milliseconds, otherwise the underlying knowledge of a
global unique time is disturbed. If human users are involved in just the input or
only the output of continuous media, delay bounds are more flexible. Consider the™
playback of a video from a remote disk. The actual delay of a single video frame
to be transferred from the disk to the monitor is unimportant. Frames must only
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arrive in a regular fashion. The user will only notice any difference in delay as start
delay (i.e., for the first video frame to be displayed).

9.3 Resource Management

Multimedia systems with integrated audio and video processing are at the limit
of their capacity, even with data compression and utilization of new technologies.
Current computers do not allow processing of data according to their deadlines
without any resource reservation and real-time process management. Processing in
this context refers to any kind of manipulation and communication of data. This
stage of development is known as the window of insufficient resources (see Figure
9.1) [ATW*90]. With CD-DA (Compact Disc Digital Audio} quality, the highest
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Figure 9.1: Window of insufficient resources.

audio requirements are satisfied. In video technology, the required data transfer rate
will go up with the development of digital HDTV and larger TV screens. Therefore,
no redundancy of resource capacity can be expected in the near future.

In a multimedia system, the given timing guarantees for the processing of continuous
media must be adhered to by every hardware and software system component along
the data path. The actual requirements depend on the type of media and the nature
of the applications supported[SM92a]. For example, a video image should not be
presented late because the communication system has been busy with a transaction
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from a database management system. In any realistic scenario we encounter several
multimedia applications which concurrently make use of shared resources. Hence,
even high bandwidth networks and huge processing capabilities require the use of
real-time mechanisms to provide guaranteed data delivery. Further, the concept of
integration does not allow solving this problem just by a slight modification of the
system for traditional applications.

Thus, in an integrated distributed multimedia system, several applications compete
for system resources. This shortage of resources requires careful allocation. The
system management must smploy adequate scheduling algorithms to serve the re-
quirements of the applications. Thereby, the resource is first allocated and then
managed.

Resource management in distributed multimedia systems covers several compuiers
and the involved communication networks. It allocates all resources involved in the
data transfer process between sources and sinks. For instance, a CD-ROM/XA de-
vice must be allocated exclusively, each CPU on the data path must provide 20%
of its capacity, the network must allocate a certain amount of its bandwidth and
the graphic processor must be reserved up to 50% for such a process. The required
throughput and a certain delay is gnaranteed. At the connection establishment
phase, the resource management ensures that the new “connection” does not vi-
olate performance guarantees already provided to existing connections. Applied
to operating systems, this model covers the CPU (including process management),
memory management, the file system and device management. Therefore, we chose
to detail this issue for all resources in a generic notion of resources in the follow-
ing paragraphs. The resource reservation is identical for all resources, whereas the
management is different for each.

9.3.1 Resources

A resource is a system entity required by tasks for manipulating data. Each resource
has a set of distinguishing characteristics classified using the following scheme:

» A resource can be active or passive. An active resource is the CPU or a network
adapter for protorol processing; it provides a service. A passive resource is
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the main memory, communication bandwidth or a file system (whenever we
do not take care of the processing of the adapter); it denotes some system
capability required by active resources.

¢ A resource can be either used exclusively by one process at a time or shared be-
tween various processes. Active resources are often exclusive; passive resources
can usually be shared among processes.

e A resource that exists only once in the system is known as a single, otherwise
it is a multiple resource. In a transputer-based multiprocessor system, the
individual CPU is a multiple resource.

Fach resource has a capacity which results from the ability of a certain task to
perform using the resource in a given time-span. In this context, capacity refers to
CPU capacity, frequency range or, for example, the amount of storage. For real-
time scheduling, only the temporal division of resource capacity among real-time
processes is of interest. Process management belongs to the category of active,
shared, and most often single resources. A file system on an optical disk with CD-
ROM XA format is a passive, shared, single resource.

9.3.2 Requirements

The requirements of multimedia applications and data streams must be served by
the single components of a multimedia system. The resource management maps
these requirements onto the respective capacity. The transmission and processing
requirements of local and distributed multimedia applications can be specified ac-
cording to the following characteristics:

1. The throughput is determined by the needed data rate of a connection to
satisfy the application requirements. It also depends on the size of the data
units.

2. We distinguish between local and global (end-to-end) delay:

(a) The delay “at the resource” is the maximum time span for the completion
of a certain task at this resource.
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(b) The end-to-end delay is the total delay for a data unit to be transmitted
from the source to its destination. For example, the source of a video
telephone is the camera, the destination is the video window on the screen
of the partner. '

3. The jitter (or delay jitter) determines the maximum allowed variance in the
arrival of data at the destination.

4. The reliability defines error detection and correction mechanisms used for the
transmission and processing of multimedia tasks. Errors can be ignored, indi-
cated and/or corrected. It is important to notice that error correction through
re-transmission is rarely appropriate for time-critical data because the re-
transmitted data will usually arrive late. Forward error correction mechanisms
are more useful. In terms of reliability, we also mean the CPU errors due to
unwanted delays in processing a task which exceed the demanded deadlines.

In accordance with communication systems, these requirements are also known as
Quality of Service parameters {(QoS).

9.3.3 Components and Phases

One possible realization of resource allocation and management is based on the inter-
action between clients and their respective resource managers. The client selects the
resource and requests a resource allocation by specifying its requirements through
a QoS specification. This is equivalent to a workload request. First, the resource
manager checks its own resource utilization and decides if the reservation request
can be served or not. All existing reservations are stored. This way, their share in
terms of the respective resource capacity is guaranteed. Moreover, this component
negotiates the reservation request with other resource managers, if necessary.

The following example of a distributed multimedia system illustrates this generic
scheme. During the connection establishment phase, the QoS parameters are usu-
ally negotiated between the requester (client application) and the addressed resource
manager. The negotiation starts in the simplest case with specification of the QoS
parameters by the application. The resource manager checks whether these re-
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quests can be guaranteed or not. A more elaborate method is to optimize single
parameters. In this case, two parameters are determined by the application (e.g.,
throughput and reliability), and the resource manager calculates the best achievable
value for the third parameter (e.g., delay). To negotlate the parameters for end-to-
end connections over one or more computer networks, resource reservation protocols
like ST-II are employed [Top90]. Here, resource managers of the single components
of the distributed system allocate the necessary resources.

In the case shown in Figure 9.2, two computers are connected over a LAN. The
transmission of video data between a camera connected to a computer server and
the screen of the computer user involves, for all depicted components, a resource
manager.
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Figure 9.2: Components grouped for the purpose of video data transmission.

This example illustrates that, in addition to the individual resource managers, there
must exist a protocol for coordination between these services, such as ST-II.
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Phases of the Resource Reservation and Management Process

A resource manager provides components for the different phases of the allocation
and management process:

1. Schedulability Test

The resource manager checks with the given QoS parameters (e.g., throughput
and reliability) to determine if there is enough remaining resource capacity
available to handle this additional request.

2. Quality of Service Calculation
After the schedulability test, the resource manager calculates the best possible
performance (e.g., delay) the resource can gnarantee for the new request.

3. Resource Reservation

The resource manager allocates the required capacity to meet the QoS guar-
antees for each request.

4. Resource Scheduling

Incoming messages from connections are scheduled according to the given QoS
guarantees. For process inanagement, for instance, the allocation of the re-
source is done by the scheduler at the moment the data arrive for processing.

With respect to the last phase, for each resource a scheduling algorithm is defined.

The schedulability test, QoS calculation and resource reservation depend on this
algorithm used by the scheduler.

9.3.4 Allocation Scheme
Reservation of resources can be made either in a pessimistic or optimistic way:
e The pessimistic approach avoids resource conflicts by making reservations for

the worst case, i.e., resource bandwidth for the longest processing time and
the highest rate which might ever be needed by a task is reserved. Resource
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conflicts are therefore avoided. This leads potentially to an underutilization
of resources. In a multimedia system, the remaining processor time (i.e., the
time reserved for traffic but not used) can be used by discrete media tasks.
This method results in a guaranteed QoS.

o With the optimistic approach, resources are reserved according to an average
workload only. This means that the CPU is only reserved for the average pro-
cessing time. This approach may overbook resources with the possibility of
unpredictable packet delays. QoS parameters are met as far as possible. Re-
sources are highly utilized, though an overload situation may result in failure.
To detect an overload situation and to handle it accordingly a monitor can be
implemented. The monitor may, for instance, preempt processes according to
their importance.

The optimistic approach is considered to be an extension of the pessimistic approach.
It requires that additional mechanisms to detect and solve resource conflicts be
implemented.

9.3.5 Continuous Media Resource Model

This section specifies a model frequently adopted to define QoS parameters and
hence, the characteristics of the data stream. It is based on the model of Linear
Bounded Arrival Processes (LBAP), as described in [And93]. In this model a dis-
tributed system is decomposed into a chain of resources traversed by the messages
on their end-to-end path. Examples of such resources are single schedulable devices
(such as LPU) or combined entities (such as networks).

The data stream consists of LDUs. In this context, we call them messages. In a
first step, the data stream itself is characterized as strictly periodic, irregular with.
a definite maximum message size. Various data streams are independent of each
other.

A closer inspection shows a possible variance of the message rate, the maximum rate
is well-defined. This variance of the data rate results in an accumulation of messages
(burst), where the maximal range is defined by the maximum allowed number of
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messages.

In the LBAP model, a burst of messages consists of messages that arrived ahead
of schedule. LBAP is a message arrival process at a resource defined by three
parameters:

e M = Maximum message size (byte/message).
¢ R = Maximum message rate {message/second).

¢ B = Maximum Burstiness (message).

Example

The LBAP model is discussed in terms of a specific example: two workstations
are interconnected by a LAN. A CD player is attached to one workstation. Single
channel audio data are transferred from the CD player of this workstation over the
network to the other computer. At this remote station, the audio data are delivered
to a speaker. The audio signal is sampled with the frequency of 44.1 kHz. Each
sample is coded with 16 bits. This results in a data rate of:

Ryyte = 44100H z X it = 88200bytes/s

The samples on a CD are assembled into frames. These frames are the audio mes-
sages to be transmitted. Seventy-five of these audio messages are transmitted per
second (R) according to the CD-format standard. Therefore, we encounter a maxi-
mum message size of:

__ B8200bytes/s
M= Thmessages/s

= 1176bytes/message

Up to 12000 bytes are assembled into one packet and transmitted over the LAN. In
a packet of 12000 bytes transmitted over the LAN, we will never encounter more
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messages than:

12000bytes —
1176bytes/message 2 10messages = B

It obviously follows that:

e M = 1176 bytes/message.
e R = 75 messages/s.

e B = 10 messages.

Burst

In the calculation below it is assumed that, because of lower adjacent data rate, a
burst never exceeds a maximum data rate. Hence, bursts do not succeed one an-
other. During a time interval of length ¢, the maximum number of messages arriving
at a resource must not exceed:

M = B + R x t(message)
For example, assume ¢t = 1s.
M = (10messages + Timessages/s X 1s = 85messages

The introduction of Burstiness B allows for short time violations of thesrate con-
straint. This way, programs and devices that generate bursts of messages can be
modeled. Bursts are generated, e.g., when data is transferred from disks in a bulk
transfer mode or, in our example, when messages are assembied into larger packets.
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Maximum Average Data Rate

The maximumn average data rate of the LBAP is:

R = M x R(bytes/s)
For example:

R = (1176bytes/message X Thmessages/s = 88200bytes/s)

Maximum Buffer Size

Messages are processed according to their rate. Messages which arrive “ahead of
schedule” must be queued. For delay period, the buffer size is:

S =M x (B + 1){bytes)
For example:

S = {1176bytes/message x 11message = 12936bytes

Logical Backlog

The function b(m) represents the logical backlog of messages. This is the number of
messages which have already arrived “ahead of schedule” at the arrival of message
m. Let a; be the actual arrival time of message m;; 0 < i < n. Then b(7) is defined

by:
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b(mg) = 0 messages

b(m;) = maz(0 messages, b(m;_1) — (a; — a;—1)R + 1 message)
For example:

a;—1 = 1.00s; a; = 1.013s; b(m;_;) = 4 messages

b(m;) = maz(0 messages, 4 messages—( 1.0133—1.003) X 75 messages/s+1 message) =
4 messages

.

Logical Arrival Time

The logical arrival time defines the earliest time a message m; can arrive at a re-
source when all messages arrive according to their rate. The logical arrival time of
a message can then be defined as:

I{(m;) = a(n;) + ﬂ-’ﬁ—'l

For example:

Im;) = 1.013s + g eseaaes — 1,06
Equivalently, it can be computed as:
l(mo) = a0

{(m;) = maz(a;, i{m;_1) + ‘}%)
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For example:
I{(m;_1) = 1.053s
I(m;) = maz(1.013s,1.053s + %)': 1.06

Guaranteed Logical Delay

The guaranteed logical delay of a message m denotes the maximum time between
the logical arrival time of m and its latest valid completion time. It results from
the processing time of the messages and the competition among different sessions
_for resources, i.e., the waiting time of the message. If a message arrives “ahead of
schedule” the actual delay is the sum of the logical delay and the time by which
it arrives too early. It is then larger than the guaranteed logical delay. It can also
be smaller than the logical delay when it is completed “ahead of schedule.” The
deadline d(m) is derived from the delay for the processing of a message m at a
resource. The deadline is the sum of the logical arrival time and its logical delay.

Workahead Messages

If a message arrives “ahead of schedule” and the resource is in an idle state, the
message can be processed immediately. The message is then called a workahead
message; the process is a workahead process. A maximum workahead time A can be
specified (e.g., from the application) for each process. This results in a maximum
workahead limit W: —

W=AxR

For example:
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A =0.04s
0.04s x 75 messages/s = 3 messages

I a message is processed “ahead of schedule” the logical backlog is greater than the
actual backlog. A message is critical if its logical arrival time has passed. Through-
out the rest of the chapter the LBAP model is assumed to apply to the arrival
processes at each resource. The resource must ensure that the arrival processes at
the output interface obeys the LBAP parameters.

9.4 Process Management

Process management deals with the resource main processor. The capacity of this re-
source is specified as processor capacity. The process manager maps single processes
onto resources according to a specified scheduling policy such that all processes meet
their requirements. In most systems. a process under control of the process manager
can adopt one of the following states:

o In the initial state, no process is assigned to the program. The process is in
the idle state.

e If a process is waiting for an event, i.e., the process lacks one of the necessary
resources for processing, it is in the blocked state.

¢ If all necessary resources are assigned to the process, it is ready to run. The
process only needs the processor for the execution of the program.

e A process is running as long as the system processor is assigned to it.
The process manager is the scheduler. This component transfers a process into the

ready-to-run state by assigning it a position in the respective queue of the dispatcher,
which is the essential part of the operating system kernel. The dispatcher manages
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the transition from ready-to-run to run. In most operating systems, the next process
to run is chosen according to a priority policy. Between processes with the same
priority, the one with the longest ready time is chosen. )

Today and in the near future existing operating systems must be considered to be
the basis of continuous media processing on workstations and personal computers.
In the next four years, there will certainly be no newly developed multimedia oper-
ating systems which will be accepted in the market; therefore, existing multitasking
systems must cope with multimedia data handling. The next paragraph provides a
brief description of real-time support typically available in such systems.

9.4.1 Real Time Process Management in Conventional Operating
Systems: An Example

UNIX and its variants, Microsoft’s Windows-NT, Apple’'s System 7 and IBM’s
0S/2™ are, and will be, the most widely installed operating systems with multi-
tasking capabilities on personal computers (including the Power PC) and worksta-
tions. Although some of them are enhanced with special priority classes for real-time
processes, this is not sufficient for multimedia applications. In [NHNW93], for exam-
ple, the SVR4 UNIX scheduler which provides a real-time static priority scheduler
in addition to a standard UNIX timesharing scheduler is analyzed. For this in-
vestigation three applications have been chosen to run concurrently; “typing” as
an interactive application, “video” as a continuous media application and a batch
program. The result was that only through trial and error a particular combina-
tion of priorities and scheduling class assignments might be found that works for a
specific application set, i.e., additional features mast be provided for the scheduling
of multimedia data processing. To be more specific, let us have a deeper look into
real-time capabilities of one of these systems, namely 0S/2. On the basis of this
system, the available real-time support is demonstrated.

Threads

0S/2 was designed as a time-sharing operating system without taking serious real-
time applications into account. An 05/2 thread can be considered as a light-weight
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process: it is the dispatchable unit of execution in the operating system. A thread
belongs to exactly one address space (called process in 0S/2 terminology). All
threads share the resources allocated by the respective address space. Each thread
has its own execution stack, register values and dispatch state (either executing or
ready-to-run). Each thread belongs to one of the following priority classes:

® The time-critical class is reserved for threads that require immediate attention.

» The fixed-high class is intended for applications that require good responsive-
ness without being time-critical.

o The regular class is used for the executing of normal tasks.

¢ The idle-time class contains threads with the lowest priorities. Any thread in
this class is only dispatched if no thread of any other class is ready to execute.

Priorities

Within each class, 32 different priorities (0, ... , 31) exist. Through time-slicing,
threads of equal priority have equal chances to execute. A context switch occurs
whenever a thread tries to access an otherwise allocated resource. The thread with
the highest priority is dispatched and the time-slice is started again. At the expira-
tion of the time slice, 0S/2 can preempt the dispatched thread if other threads of
equal or higher priority are ready to execute. The time slice can be varied between
32 msec and 65536 msec. The goal at the determination of the time slice duration is
to keep the number of context switches low and to get a fair and efficient schedule
for the whole run-time of the system. Threads of the regular class may be subject
to a dynamic rise of priority as a function of the waiting time.

~ Threads are preemptive, i.e., if a higher-priority thread becomes ready to execute,
the scheduler preempts the lower-priority thread and assigns the CPU to the higher-
priority thread. The state of the preempted thread is recorded so that execution
can be resumed later.
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Physical Device Driver as Process Manager

In OS/2, applications with real-time requirements can run as Physical Device Drivers
(PDD) at ring 0 (kernel mode). These PDDs can be made non-preemptable. An
interrupt that occurs on a device (e.g., packets arriving at the network adapter)
can be serviced from the PDD immediately. As soon as an interrupt happens on a
device, the PDD gets control and does all the work to handle the interrupt. This
may also include tasks which could be done by application processes running in ring
3 (user mode). The task running at ring 0 should (but must not) leave the kernel
mode after 4 msec.

PDD programming is complicated mainly due to difficult testing ar 1 debugging.
PDD is bound to its device; it only handles requests from its device regardless of
any other events happening in the system. Different streams that request real-
time scheduling can only be served by their PDDs. They run in competition with
each other without the possibility of coordinating or managing them by any higher
instance. This is insufficient for a multimedia system where messages can arrive at
different adapter cards. Internal time-critical system activities cannot be controlled
and managed through PDDs. Therefore, they cannot be considered and accounted
for during scheduling decisions. The execution of real-time processes with PDDs is
only a reasonable solution for a system where streams arrive at only one device and
no other activity in the system has to be considered.

Operating system extensions for continucus media processing can be impiemented
as PDDs. In this approach, a real-time scheduler and the process management
run as a PDD being activated by a high resolution timer. In principle, this is the
implementation scheme of the 0OS/2 Multimedia Presentation Manager™ . which
represents the multimedia extension to 0S/2.

Enhanced System Scheduler as Process Manager

Time-critical tasks can also be processed together with normal applications running
in ring 3, the user level. The critical tasks can be implemented by threads running
in the priority class time-critical with one of the 32 priorities within this class.
Each real-time task is assigned to o1» thread. A thread is interrupted if another



248 CHAPTER 9. MULTIMEDIA OPERATING SYSTEMS

thread with higher priority requires processing. Non-time-critical applications run as
threads in the regular class. They are dispatched by the operating system scheduler
according to their priority.

The main advantage of this approach is the control and coordination of all time-
critical threads through a higher instance, the system scheduler. This instance, run-
ning with a higher priority than all other threads, controls and coordinates threads
according to the adapted scheduling algorithm and the respective processing require-
ments. It can observe the run-time behavior of single threads. Another entity, the
resource manager, determines feasible schedules, takes care of QoS calculating and
resource reservation. The competition for the CPU is regulated. The employment
of an internal scheduling strategy and resource management allows the provision of
processing guarantees. Yet it requires that the native scheduler be enhanced.

Meta-scheduler as Process Manager

The normally priority-driven system scheduler is used to schedule all tasks. A
meta-scheduler is employed to assign priorities to real-time tasks, i.e., this meta-
scheduler considers only tasks with real-time requirements. Non-time-critical tasks
are processed when no time-critical task is ready for execution. In an integrated
system the process management of continuous data processes will not be realized as
a meta-scheduler; it rather will be part of the system process manager itself. This
meta-scheduler approach is also applied in many UNIX systems.

9.4.2 Real-time Processing Requirements

Continuous media data processing must occur in exactly predetermined - usually
periodic — intervals. Operations on these data recur over and over and must be
completed at certain deadlines. The real-time process manager determines a sched-
ule for the resource CPU that allows it to make reservations and to give processing
guarantees. The problem is to find a feasible scheduler which schedules all time-
critical continuous media tasks in a way that each of them can meet its deadlines.
This must be guaranteed for all tasks in every period for the whole run-time of the
system. In a multimedia system, continuous and discrete media data are processed
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concurrently.

For scheduling of multimedia tasks, two conflicting goals must be considered:

e An uncritical process should not suffer from starvation because time-critical
processes are executed. Multimedia applications rely as much on text and
graphics as on audio and video. Therefore, not all resources should be occupied
by the time-critical processes and their management processes.

e On the other hand, a time-critical process must never be subject to priority
inversion. The scheduler must ensure that any priority inversion (also between
time-critical processes with different priorities) is avoided or reduced as much
as possible. -

Apart from the overhead caused by the schedulability test and the connection es-
tablishment, the costs for the scheduling of every message must be minimized. They
are more critical because they occur periodically with every message during the pro-
cessing of real-time tasks. The overhead generated by the scheduling and operating
system is part of the processing time and therefore must be added to the processing
time of the real-time tasks. Thus, it is favorable to keep them low. It is particularly
difficult to observe the timing behavior of the operating system and its influence on
the scheduling and the processing of time-critical data. It can lead to time garbling
of application programs. Therefore, operating systems in real-time systems cannot
be viewed as detached from the application programs and vice versa.

9.4.3 Traditional Real-time Scheduling

The problem of real-time processing is widely known in computer science [HS89,
Lev89, SG90, TK91]. Some real-time scheduling methods are employed in opera-
tions research. They differ from computer science real-time scheduling because they
operate in a static environment where no adaptation to changes of the workload is
necessary [WC87).

The goal of traditional scheduling on time-sharing computers is optimal throughput,
optimal resource utilization and fair queuing. In contrast, the main goal of real-time
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tasks is to provide a schedule that allows all, respectively, as many time-critical
processes as possible, to be processed in time, according to their deadline. The
scheduling algorithm must map tasks onto resources such that all tasks meet their
time requirements. Therefore, it must be possible to show, or to proove, that a
scheduling algorithm applied to real-time systems fulfills the timing requirements of
the task.

There are several attempts to solve real-time scheduling problems. Many of them
are just variations of basic algorithms. To find the best solutions for multimedia
systems, two basic algorithms are analyzed, Earliest Deadline First Algorithm and
Rate Monotonic Scheduling, and their advantages and disadvantages are elaborated.
In the next section, a system model is introduced, and the relevant expressions are
explained.

9.4.4 Real-time Scheduling: System Model

All scheduling algorithms to be introduced are based on the following system model
for the scheduling of real-time tasks. Their essential components are the resources
(as discussed previously), tasks and scheduling goals.

A task is a schedulable entity of the system, and it corresponds to the notion of
a thread in the previous description. In a hard real-time system, a task is char-
acterized by its timing constraints, as well as by its resource requirements. In the
considered case, only periodic tasks without precedence constraints are discussed,
i.e., the processing of two tasks is mutually independent. For multimedia systems,
this can be assumed without any major restriction. Synchronized data, for example,
can be processed by a single process.

The time constraints of the periodic task T are characterized by the following pa-
rameters (s, e, d, p) as described in [LM80]:

e s: Starting point

¢ e: Processing time of T

» d: Deadline of T
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e p. Period of T

o r: Rate of T(r = 1)
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Figure 9.3: Characterization of periodic tasks.

whereby 0 < e < d < p (see Figure 9.3). The starting point s is the first time
when the periodic task requires processing. Afterwards, it requires processing in
every period with a processing time of e. At s + (k- 1)p, the task T is ready for
k-processing. The processing of T in period k must be finished at s + (k- 1lp+4d.
For continuous media tasks, it is assumed that the deadline of the period (k ~ 1)
is the ready time of period k. This is known as congestion aveiding deadlines: the
deadline for each message (d) coincides with the period of the respective periodic
task (p).

Tasks can be preemptive or non-preemptive. A preemptive task can be interrupted
by the request of any task with a higher priority. Processing is continued in the same
state later on. A non-preemptive task cannot be interrupted until it voluntarily
yields the processor. Any high-priority task must wait until the low-priority task is
finished. The high-priority task is then subject to priority inversion. In the following,
all tasks processed on the CPU are considered as preemptive unless otherwise stated.

In a real-time system, the scheduling algorithm must determine a schedule for an
exclusive, limited resource that is used by different processes concurrently such that
all of them can be processed without violating any deadlines. This notion can be
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extended to a model with multiple resources (e.g.. CPU) of the same type. It can
also be extended to cover different resources such as memory and bandwidth for
communication, i.e., the function of a scheduling algorithm is to determine, for a
given task set, whether or not a schedule for executing the tasks on an exclusive
bounded resource exists, such that the timing and resource constraints of all tasks
are satisfied (planning goal). Further, it must calculate a schedule if one exists.
A scheduling algorithm is said to guarantee a newly arrived task if the algorithm
can find a schedule where the new task and all previously guaranteed tasks can
finish processing to their deadlines in every period over the whole run-time. If a
scheduling algorithm guarantees a task, it ensures that the task finishes processing
prior to its deadline {CSR88]. To guarantee tasks, it must be possible to check the
schedulability of newly arrived tasks.

A major performance metric {or a real-time scheduling algorithm is the guarantee
ratio. The gnarantee ratio is the total number of guaranteed tasks versus the number
of tasks which could be processed.

Another performance metric is the processor utilization. This is the amount of pro-
" cessing time used by guaranteed tasks versus the total amount of processing time

[LL73]:

U = Z?:l %;

9.4.5 Earliest Deadline First Algorithm

The Earliest Deadline First (EDF) algorithm is one of the best-known algorithms
for real-time processing. At every new ready state, the scheduler selects the task
with the earliest deadline among the tasks that are ready and not fully processed.
The requested resource is assigned to the selected task. At any arrival of a new
task (according to the LBAP model), EDF must be computed immediately leading
to a new order, i.e., the running task is preempted and the new task is scheduled
according to its deadline. The new task is processed immediately if its deadline is
earlier than that of the interrupted task. The processing of the interrupted task is
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continued according to the EDF algorithm later on. EDF is not only an algorithm
for periodic tasks, but also for tasks with arbitrary requests, deadlines and service
execution times [Der74]. In this case, no guarantee about the processing of any task
can be given.

EDY is an optimal, dynamic algorithm, i.e., it produces a valid schedule whenever
one exists. A dynamic algorithm schedules every instance of each incoming task
according to its specific demands. Tasks of periodic processes must be scheduled in
each period again. With n tasks which have arbitrary ready-times and deadlines,
the complexity is ©(n?).

For a dynamic algorithm like EDF, the upper bound of the processor utilization is
100%. Compared with any static priority assignment, EDF is optimal in the sense
that if a set of tasks can be scheduled by any static priority assignment it also can
be scheduled by EDF. With a priority-driven system scheduler, each task is assigned
a priority according to its deadline. The highest priority is assigned to the task with
the earliest deadline; the lowest to the one with the furthest. With every arriving
task, priorities might have to be adjusted.

Applying EDF to the scheduling of continuous media data on a single processor
machine with priority scheduling, process priorities are likely to be rearranged quite
often. A priority is assigned to each task ready for processing according to its
deadline. Common systems usually provide only a restricted number of priorities.
If the computed priority of a new process is not available, the priorities of other
processes must be rearranged until the required priority is free. In the worst case,
the priorities of all processes must be rearranged. This may cause considerable
overhead. The EDF scheduling algorithm itself makes no use of the previously
known occurrence of periodic tasks.

EDF is used by different models as a basic algorithm. An extension of EDF is the
Time-Driven Scheduler (TDS). Tasks are scheduled according to their deadlines.
Further, the TDS is able to handle overload situations. If an overload situation
occurs the scheduler aborts tasks which cannot meet their deadlines anymore. If
there is still an overload situation, the scheduler removes tasks which have a low
“value density.” The value density corresponds to the importance of a task for the
system.
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In {LLSY91] another priority-driven EDF scheduling algorithm is introduced. Here,
every task is divided into a mandatory and an optional part. A task is terminated
according to the deadline of the mandatory part, even if it is not completed at this
time. Tasks are scheduled with respect to the deadline of the mandatory parts. A
set of tasks is said to be schedulable if all tasks can meet the deadlines of their
mandatory parts. The optional parts are processed if the resource capacity is not
fully utilized. Applying this to continuous media data, the method can be used
in combination with the encoding of data according to their importance. Take,
for example, a single uncompressed picture in a bitmap format. Each pixel of
this monochrome picture is coded with 16 bits. The processing of the eight most
significant bits is mandatory, whereas the processing of the least-significant bits can
be considered optional. With this method, more processes can be scheduled. In
an overload situation, the optional parts are aborted. This implementation leads
to decreased quality by media scaling. During QoS requirement specification, the
tasks were accepted or informed that scaling may occur. In such a case, scaling
QoS parameters can be introduced which reflect the respective implementation.
Therefore, this approach avoids errors and improves system performance at the
expense of media quality.

9.4.6 Rate Monotonic Algorithm

The rate monotonic scheduling principle was introduced by Liu and Layland in 1973
[LL73). 1t is an optimal, static, priority-driven algorithm for preemptive, periodic
jobs. Optimal in this context means that there is no other static algorithm that
is able to schedule a task set which cannot be scheduled by the rate monotonic
algorithm. A process is scheduled by a static algorithm at the beginning of the
processing. Subsequently, each task is processed with the priority calculated at the
beginning. No further scheduling is required. The following five assumptions are
necessary prerequisites to apply the rate monotonic algorithm:

1. The requests for all tasks with deadlines are periodic, i.e., have constant in-
tervals between consecutive requests.
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2. The processing of a single task must be finished before the next task of the
same data stream becomes ready for execution. Deadlines consist of runability
constraints only, i.e., each task must be completed before the next request
occurs.

3. All tasks are independent. This means that the requests for a certain task do
not depend on the initiation or completion of requests for any other task.

4. Run-time for each request of a task is constant. Run-time denotes the maxi-
mum time which is required by a processor to execute the task without inter-

ruption.

5. Any non-periodic task in the system has no required deadline. Typically, they
initiate periodic tasks or are tasks for failure recovery. They usually displace
periodic tasks.

Further work has shown that not all of these assumptions are mandatory to employ
the rate monotonic algorithm [LSST91, SKG91]. Static priorities are assigned to
tasks, once at the connection set-up phase, according to their request rates. The
priority corresponds to the importance of a task relative to other tasks. Tasks with
higher request rates will have higher priorities. The task with the shortest period
gets the highest priority and the task with the longest period gets the lowest priority.

The rate monotonic algorithm is a simple method to schedule time-critical, periodic
tasks on the respective resource. A task will always meet its deadline, if this can be
proven to be true for the longest response time. The response time is the time span
between the request and the end of processing the task. This time span is maximal
when all processes with a higher priority request to be processed at the same time.
This case is known as the critical instant (see Figure 9.4). In this figure, the priority
of @ is, according to the rate monotonic algorithm, higher than b, and & is higher
than ¢. The critical time zone is the time interval between the critical instant and
the completion of a task.
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Figure 9.4: An example of critical instants.

9.4.7 EDF and Rate Monotonic: Context switches

Consider an audio and a video stream scheduled according to the rate monotonic
algorithm. Let the audio stream have a rate of 1/75 s/sample and the video stream
a rate of 1/25 s/frame. The priority assigned to the audio stream is then higher
than the priority assigned to the video stream. The arrival of messages from the
audjo stream will interrupt the processing of the video stream. If it is possible to
complete the processing of a video message that requests processing at the critical
instant before its deadline, the processing of all video messages to their deadlines is
ensured, thus a feasible schedule exists.

If more than one stream is processed concurrently in a system, it is very likely that
there might be more context switches with a scheduler using the rate monotonic
algorithm than one using EDF. Figure 9.5 shows an example.

9.4.8 EDF and Rate Monotonic: Processor Utilizations

The processor utilization of the rate monotonic algorithm is upper bounded. It
depends on the number of tasks which are scheduled, their processing times and
their. periods. There are two issues to be considered:
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Figure 9.5: Rate monotonic versus EDF: context switches in preemptive systems.

1. The upper bound of the processor utilization which is determined by the crit-

ical instant.

2. For each number n of independent tasks #(j), a constellation can be found

where the maximum possible processor utilization is minimal. The least upper

bound of the processor utilization is the minimum of all processor utilizations
over all sets of tasks t{7): j € (1,...,n) that fully utilize the CPU. A task set
fully utilizes the CPU when it is not possible to raise the processing time of

one task without violating the schedule.

Following this assumption, [LL73] gives an estimation of the maximal processor

utilization where the processing of each task to its deadline is guaranteed for any

constellation. A set of m independent, periodic tasks with fixed priority will always

meet its deadline if:
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According to {LS86] and [LL73], for large m, the least upper bound of the processor
utilization is U = In2. Hence, it is sufficient to check if the processor utilization is
less than or equal to the given upper bound to find out if a task set is schedulable or
not. Most existing systems check this by simply comparing the processor utilization
with the value of In2.

With EDF, a processor utilization of 100% can be achieved because all tasks are
scheduled dynamically according to their deadlines. Figure 9.6 shows an exam-
ple where the CPU can be utilized to 100% with EDF, but where rate monotonic
scheduling fails.
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Figure 9.6: Rate monotonic versus EDF: processor utilization.

The problem of underutilizing the processor is aggregated by the Jact that, in most
cases, the average task execution time is considerably lower than the worst case
execution time. Therefore, scheduling algorithms should be able to handle tran-
sient processor overload. The rate monotonic algorithm on average ensures that all
deadlines will be met even if the bottleneck utilization is well above 80%. With one
deadline postponement, the deadlines on average are met when the utilization is
over 90%. [SSL89] mentions an achieved utilization bound for the Nowy’s Inertial
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Navigation System of 88%.

As described above, a static algorithm schedules a process once at the beginning
of processing. Single tasks are not explicitly scheduled afterwards. A dynamic
algorithm schedules every incoming task according to its specific demands. Since the
rate monotonic algorithm is an optimal static algorithm, no other static algorithm
can achieve a higher processor utilization.

9.4.9 Extensions to Rate Monotonic Scheduling

There are several extensions to this algorithm. One of them divides a task into a
mandatory and an optional part. The processing of the mandatory part delivers a
result which can be accepted by the user. The optional part only refines the resuit.
The mandatory part is scheduled according to the rate monotonic algorithm. For
the scheduling of the optional part, other, different policies are suggested [CL8S,
LLN87, CL89).

In some systems there are aperiodic tasks next to periodic ones. To meet the require-
ments of periodic tasks and the response time requirements of aperiodic requests,
it must be possible to schedule both aperiodic and periodic tasks. If the aperiodic
request is an aperiodic continuous stream (e.g., video images as part of a slide show),
we have the possibility to transform it into a periodic stream. Every timed data item
can be substituted by n items. The new items have the duration of the minimal life
span. The number of streams is increased, but since the life span is decreased, the
semantic remains unchanged. The stream is now periodical because every item has
the same life span [Her90]. If the stream is not continuous, we can apply a sporadic
server to respond to aperiodic requests. The server is provided with a computation
budget. This budget is refreshed ¢ units of time after it has been exhausted. Earlier
refreshing is also possible. The budget represents the computation time reserved
for aperiodic tasks. The server is only allowed to preempt the execution of periodic
tasks as long as the computation budget is not exhausted. Afterwards, it can only
continue the execution with a background priority. After refreshing the budget,
_the execution can resume at the server’s assigned priority. The sporadic server is
especially suitable for events that occur rarely, but must be handled quickly (e.g., a
telepointer in a CSCW application) [SG90, SSL89, Spr90].
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The rate monotonic algorithm is, for example, applied in real-time systems and
real-time operating systems by NASA and the European Space Agency [SR89].
It is particularly suitable for continuous media data processing because it makes
optimal use of their periodicity. Since it is a static algorithm, there is nearly no
rearrangement of priorities and hence - in contrast to EDF - no scheduling overhead
to determine the next task with the highest priority. Problems emerge with data
streams which have no constant processing time per message, as specified in MPEG-
2 (e.g., a compressed video stream where one of five pictures is a full picture and all
others are updates of a reference picture). The simplest solution is to schedule these
tasks according to their maximum data rate. In this case, the processor utilization
is decreasing. The idle time of the CPU can be used to process non-time-critical
tasks. In multimedia systems, for example, this is the processing of discrete media.

9.4.10 Other Approaches for In-Time Scheduling

Apart from the two methods previously discussed, further scheduling algorithms
have been evaluated regarding their suitability for the processing of continuous me-
dia data. In the following paragraphs, the most significant approaches are briefly
described and the reasons for their non-suitability, compared to EDF and rate-
monotonic, are enumerated.

Least Lazity First (LLF). The task with the shortest remaining laxity is scheduled
first [CW90, LS86]. The laxity is the time between the actual time ¢ and the dead-
line minus the remaining processing time. The laxity in period k is:

k=(s+(k-1p+d)-(t+e)

LLF is an optimal, dynamic algorithm for ezclusive resources. Furthermore, it is an
optimal algorithm for multiple resources if the ready-times of the real-time tasks are
the same. The larity is a function of a deadline, the processing time and the current
time. Thereby, the processing time cannot be exactly specified in advance. When
calculating the laxity, the worst case is assumed. Thercfore, the determination of
the laxity is inexact. The laxity of waiting processes dyni nically changes over time.
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During the run-time of a task, another task may get a lower laxity. This task must
then preempt the running task. Consequently, tasks can preempt each other several
times without dispatching a new task. This may cause numerous context switches.
At each scheduling point (when a process becomes ready-to-run or at the end of
a time slice), the laxity of each task must be newly determined. This leads to an
additional overhead compared with EDF. Since we have only a single resource to
schedule, there is no advantage in the employment of LLF compared with EDF.
Future multimedia systems might be multiprocessor systems; here, LLF might be
of advantage.

Deadline Monotone Algorithm. If the deadlines of tasks are less than their period
(d; < p;), the prerequisites of the rate monotonic algorithm are violated. In this
case, a fixed priority assignment according to the deadlines of the tasks is optimal.
A task T; gets a higher priority than a task T} if d; < d;. No effective schedulability
test for the deadline monotone algorithm exists. To determine the schedulability of
a task set, each task must be checked if it meets its deadline in the worst case. In this
case, all tasks require execution to their critical instant [LW82, LSST91)]. Tasks with
a deadline shorter than their period, for example, arise during the measurements of
temperature or pressure in control systems. In multimedia systems, deadlines equal
to period lengths can be assumed.

Shortest Job First (SJF). The task with the shortest remaining computation time
is chosen for execution [CW90, Fre82). This algorithm guarantees that as many
tasks as possible meet their deadlines under an overload situation if all of them have
the same deadline. In multimedia systems where the resource management allows
overload situations this might be a suitable algorithm.

Apart from the most important real-time scheduling methods discussed above, oth-
ers might be employed for the processing of continuous media data (an on-line
scheduler for tasks with unknown ready-times is introduced by [HL88]; in [HS89],
a real-time monitoring system is presented where all necessary data to calculate an
optimal schedule are available). In most multimedia systems with preemptive tasks,
the rate monotonic algorithm in different variations is employed. So far, no other
scheduling technique has been proven to be at least as suitable for multimedia data
handling as the EDF and rate monotonic approaches.
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9.4.11 Preemptive versus Non-preemptive Task Scheduling

Real-time tasks can be distinguished into preemptive and non-preemptive tasks. If
a task is non-preemptive, it is processed and not interrupted until it is finished
or requires further resources. The contrary of non-preemptive tasks are preemptive
tasks. The processing of a preemptive task is interrupted immediately by a request of
any higher-priority task. In most cases where tasks are treated as non-preemptive,
the arrival times, processing times and deadlines are arbitrary and unknown to
the scheduler until the task actually arrives. The best algorithm is the one which
maximizes the number of completed tasks. In this case, it is not possible to provide
any processing guarantees or to do resource management.

To guarantee the processing of periodic processes and to get a feasible schedule for
a periodic task set, tasks are usually treated as preemptive. One reason is that
high preemptability minimizes priority inversion. Another reason is that for some
non-preemptive task sets, no feasible schedule can be found; whereas for preemptive
scheduling, it is possible. Figure 9.7 shows an example where the scheduling of
preemptive tasks is possible, but non-preemptive tasks cannot be scheduled.

Liu and Layland [LL73] show that a task set of m periodic, preemptive tasks with
processing times e; and request periods p; Vi € (1,...,m) is schedulable:

e With fixed priority assignment if:
Y <In2
e And for deadline driven scheduling if:

.
ract

Here, the preemptiveness of tasks is a necessary prerequisite to check their schedu-
jability.
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Figure 9.7: Preemptive vs. non-preemptive scheduling.

The first schedulability test for the scheduling of non-preemptive tasks was in-
troduced by Nagarajan and Vogt in [NV92]. Assume, without loss of general-
ity, that task m has highest priority and task 1 the lowest. They proove that
a set of m periodic streams with periods p;, deadlines d;, processing times e; and
d; < p;¥i € (1,...,m)is schedulable with the non-preemptive fixed priority scheme if:

dm > €m + MaT(1<i<m)€i
di 2 €; + mar(cjcm)€; + 2. 5=ip1 € F(di — €j,p;5)
where F(z,y) = ceil(T) +1

This means that the time between the logical arrival time and the deadline of a tasi
t; has to be larger or equal to the sum of its processing time e; and the processing
time of any higher-priority task that requires execution during that time interval,
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plus the longest processing time of all lower- and higher-priority tasks maz(;<;jcm)
e; that might be serviced at the arrival of task ¢; (Figure 9.8).
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Figure 9.8: Deadline requirements for non-preemptive scheduling.

The schedulability test is an extension of Liu’s and Layland’s. Given m periodic
tasks with periods p; and the same processing time E per message, let d; =p; + F
be the deadline for task ¢;. Then, the streams are schedulable:

¢ With the non-preemptive rate monotonic scheme with:

LaXxE<n2

o With deadline-based scheduling, the same holds with:

TaxE<L1

. Consequently, non-preemptive continuous media tasks can also be scheduled. How-
ever, the scheduling of non-preemptive tasks is less favorable because the number
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“of schedulable task sets is smaller compared to preemptive tasks.

9.4.12 Scheduling of Continuous Media Tasks: Prototype Operat-
ing Systems

Most multimedia operating systems apply one of the previously discussed methods.
In some systems, the scheduler is replaced by a real-time scheduler. Therefore, these
systems can be viewed as new operating systems. They are usually not compatible
with existing systems and applications. Other systems apply a meta-scheduler based
on an existing process manager. Only these systems will have a commercial impact
in the short and medium terms because they allow existing applications to run.

ARTS

The Advanced Real Time Technology Operating System is a real-time operating sys-
tem for a distributed environment with one real-time process manager. It was
developed on SUN3 workstations and connected with a real-time network based on
the IEEE.802.5 Token Ring and Ethernet by the Computer Science department of
Carnegie Mellon University. To solve the scheduling problems, the Time-Driven
Scheduler (TDS) with a priority inheritance protocol was adopted. This priority
inheritance protocol was used to prevent unbounded priority inversion among com-
munication tasks. Tasks with hard deadlines are scheduled according to the rate
monotonic algorithm. The system is also provided with other scheduling methods
for experimental reasons [MT90).

YARTOS

Yet Another Real Time Operating System was developed at the University of North
Carolina at Chapel Hill as an operating system kernel to support conferencing ap-
plications [JSP91]. An optimal, preemptive algorithm to schedule tasks on a single
processor was developed. The scheduling algorithm results from the integration of a
synchronization scheme to access shared resources with the EDF algorithm. Here, a
task has two notions of deadline, one for the initial acquisition of the processor, and
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one for the execution of operations on resources. To avoid priority inversion, tasks
are provided with separate deadlines for performing operations on shared resources.
It is guaranteed that no shared resource is accessed simultaneously by more than
one task. Further, a shared resource is not occupied by a single task longer than
absolutely necessary.

Split-level Scheduling

The split-level scheduler was developed within the DASH project at the University of
California at Berkeley. Its main goal was to provide a better support for multimedia
applications [And93]. The applied scheduling policy is deadline/workahead schedul-
ing. The LBAP-model is used to describe arrival processes. Critical processes have
priority over all other processes and they are scheduled according to the EDF algo-
rithm preemptively. Interactive processes have priority over workahead processes as
long as they do not become critical. The scheduling policy for workahead processes
is unspecified, but may be chosen to minimize context switching. For non-real-time
processes, a scheduling strategy like UNIX time-slicing is chosen.

Three Class Scheduler

This scheduler was developed as part of a video-on-demand file servicer at DEC,
Littleton. The design of the scheduler is based on a combination of weighted round-
robin and rate monotonic scheduling {RVG*93]. Three classes of schedulable tasks
are supported. The isochronous class with the highest priority applies the rate
monotonic algorithm, the real-time and the general-purpose classes use the weighted
round-robin scheme. A general-purpose task is preemptive and runs with a low
priority. The real-time class is suitable for tasks that require guaranteed throughput
and bounded delay. The isochronous class supports real-time periodic tasks that
require performance guarantees for throughput, bounded latency and low jitter.
Real-time and isochronous tasks can only be preempted in “preemption windows.”

The scheduler executes tasks from a ready queue in which all isochronous tasks
are arranged according to their priority. At the arrival of a task, the scheduler de-
termines whether the currently running task must be preempted. General-purpose
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tasks are immediately preempted, real-time tasks are preempted in the next preemp-
tion window and isochronous tasks are preempted in the next preemption window if
their priority is lower than the one of the new task. Whenever the queue is empty,
the scheduler alternates between the real-time and general-purpose classes using a
weighted round-robin scheme.

Meta-scheduler

To support real-time processing of continuous media, a meta-scheduler for the oper-
ating systems AIXTM[WBV92] and 0S/2 [MSS892] was developed at the European
Networking Center of IBM in Heidelberg. Both are based on the LBAP model. Ac-
cording to the rate monotonic algorithm, rates are mapped onto system priorities.

Experience with the Meta-scheduler Approach

In this paragraph, the employment of the OS/2 meta-scheduler is discussed [MS592].
Experience shows the limits of this approach. For example, each process in the
system is able to run with a priority initially intended for real-time tasks. These
processes are not scheduled by the resource manager and therefore violate the calcu-
lated schedule. A malicious process can block the whole system by simply running
with the highest priority without giving up control.

The management of scheduling algorithms requires exact time measurement. In
0S/2, for example, it is not possible to measure the exact time a thread is using
the CPU. Any measurement of the processing time includes interrupts. If a process
is interrupted by another process, it also includes the time needed for the context
switch. The granularity of the OS/2 system timers is insufficient for the processing
of real-time tasks. Hence, the rate control is inaccurate because it is determined by
the granularity of the system timer.

To achieve full real-time capabilities, at least the native scheduler of the operating
system would must be extended. The operating system should be enhanced by a
class of fast, non-preemptive threads and the ability to mask interrupts for a short
period of time. Priorities in this thread class should only be assigned to threads
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that are already registered by the resource manager. This class should be reserved
exclusively for selected threads and monitored by a system component with extensive
control facilities. Performance enhancement of the scheduler itself, incorporating
some mechanisms of real-time scheduling like EDF, would be another solution. The
operating system should, in any case, provide a time measurement tool that allows
the measurement of pure CPU time and a timer with a finer granularity. This may
be achieved through a timer chip.

9.5 File Systems

The file system is said to be the most visible part of an operating system. Most
programs write or read files. Their program code, as well as user data, are stored
in files. The organization of the file system is an important factor for the usability
and convenience of the operating system. A file is a sequence of information held as
a unit for storage and use in a computer system [Kra88].

Files are stored in secondary storage, so they can be used by different applications.
The life-span of files is usually longer than the execution of a program. In tradi-
tional file systems, the information types stored in files are sources, objects, libraries
and executables of programs, numeric data, text, payroll records, etc. {PS83]. In
multimedia systems, the stored information also covers digitized video and audio -
with their related real-time “read” and “write” demands. Therefore, additional
requirements in the design and implementation of file systems must be considered.

The file system provides access and control functions for the storage and retrieval
of files. From the user’s viewpoint, it is important how the file system allows file or-
ganization and structure. The internals, which are more important in our context,
Le., the organization of the file system, deal with the representation of informa-
tion in files, their structure and organization in secondary storage. Because of its
importance for multimedia, disk scheduling is also presented in this context.

The next section starts with a brief characterization of traditional file systems and
disk scheduling algorithms. Subsequently, different approaches to organize multi-
media files and disk scheduling algorithms for the use in multimedia systems are



9.5. FILE SYSTEMS 269

discussed.

9.5.1 Traditional File Systems

The two main goals of traditional files systems are: (1) to provide a comfortable
interface for file access to the user, and (2) to make efficient use of storage media.
Whereas the first goal is still an area of interest for research (e.g., indexing for file
systems [Sal91] and intelligent file systems for the content-based associative access
to file system data [GO91]), the structure, organization and access of data stored
on disk have been extensively discussed and investigated over the last decades. To
understand the specific multimedia developments in this area, this section gives a
brief overview on files, file system organizations and file access mechanisms. Later,
disk scheduling algorithms for file retrieval are discussed.

File Structure

We commonly distinguish between two methods of file organization. In sequential
storage, each file is organized as a simple sequence of bytes or records. Files are
stored consecutively on the secondary storage media as shown in Figure 9.9 . They
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Figure 9.9: Contiguous and non-contiguous storage.

are separated from each other by a well defined “end of file” bit pattern, character
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or character sequence. A file descriptor is usually placed at the beginning of the file
and is, in some systems, repeated at the end of the file. Sequential storage is the
only possible way to organize the storage on tape, but it can also be used on disks.
The main advantage is its efficiency for sequential access, as well as for direct access
(Kra88]. Disk access time for reading and writing is minimized.

Additionally, for further improvement of performance with caching, the file can be
read ahead of the user program [Jan85]. In systems where file creation, deletion
and size modification occur frequently, sequential storage has major disadvantages.
Secondary storage is split and fragmented, through creation and deletion operations,
and files cannot be extended without copying the whole files into a larger space. The
files may be copied such that all files are adjacently located, i.e., without any “holes”
between them.

In non-sequential storage, the data items are stored in a non-contiguous order. There
exist mainly two approaches:

» One way is to use linked blocks, where physical blocks containing consecutive
logical locations are linked using pointers. The file descriptor must contain
the number of blocks occupied by the file, the pointer to the first block and
it may also have the pointer to the last block. A serious disadvantage of this
method is the cost of the implementation for random access because all prior
data must be read. In MS-DOS, a similar method is applied. A File Allocation
Table (FAT) is associated with each disk. One entry in the table represents
one disk block. The directory entry of each file holds the block number of the
first block. The number in the slot of an entry refers to the next block of a
file. The slot of the last block of a file contains an end-of-file mark [Tan87).

» Another approach is to store block information in mapping tables. Each file is
associated with a table where, apart from the block numbers, information like
owner, file size, creation time, last access time, etc., are stored. Those tables
usually have a fixed size, which means that the number of block references is
bounded. Files with more blocks are referenced indirectly by additional tables
assigned to the files. In UNIX, a small table (on disk) called an i-node is
associated with each file (see Figure 9.10). The indexed sequential approach
is an example for multi-level mapping; here, logical and physical organization
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Figure 9.10: The UNIX i-node [Tane87].

are not clearly separated [Kra88].

Directory Siructure

Files are usually organized in directories. Most of today’s operating systems provide
tree-structured directories where the user can organize the files according to his/her
personal needs. In multimedia systems, it is important to organize the files in a way
that allows easy, fast, and contiguous data access.

Disk Management

Disk access is a slow and costly transaction. In traditional systems, a common
technique to reduce disk access are block caches. Using a block cache, blocks are kept
in memory because it is expected that future read or write operations access these
data again. Thus, performance is enhanced due to shorter access time. Another
way to enhance performance is to reduce disk arm motion. Blacks that are likely to
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be accessed in sequence are placed together on one cylinder. To refine this method,
rotational positioning can be taken into account. Consecutive blocks are placed on
the same cylinder, but in an interleaved way as shown in Figure 9.11. Another
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Figure 9.11: Interleaved and non-interleaved storage.

important issue is the placement of the mapping tables (e.g., I-nodes in UNIX) on
the disk. If they are placed near the beginning of the disk, the distance between
them and the blocks will be, on average, half the number of cylinders. To improve
this, they can be placed in the middle of the disk. Hence, the average seek time
is roughly reduced by a factor of two. In the same way, consecutive blocks should
be placed on the same cylinder. The use of the same cylinder for the storage of
mapping tables and referred blocks also improves performance.

Disk Scheduling

Whereas strictly sequential storage devices (e.g., tapes) do not have a scheduling
problem, for random access storage devices, every file operation may require move-
ments of the read/write head. This operation, known as “to seek,” is very time
consuming, i.e., a seek time in the order of 250 ms for CDs is still state-of-the-art.
The actual time to read or write a disk block is determined by:

o The seek time (the time required for the movement of the read/write head).
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o The latency time or rotational delay (the time during which the transfer cannot
proceed until the right block or sector rotates under the read/write head).

e The actual data transfer time needed for the data to copy from disk into main
memory.

Usually the seek time is the largest factor of the actual transfer time. Most systems
try to keep the cost of seeking low by applying special algorithms to the schedul-
ing of disk read/write operations. The access of the storage device is a problem
greatly influenced by the file allocation method. For instance, a program read- .
ing a contiguously allocated file generates requests which are located close together
on a disk. Thus head movement is limited. Linked or indexed files with blocks,
which are widely scattered, cause many head movements. In multi-programming
systems, where the disk queue may often be non-empty, fairness is also a criterion
for scheduling. Most systems apply one of the following scheduling algorithms:
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Figure 9.12: FCFS disk scheduling.

e First-Come-First-Served (FCFS)
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With this algorithm, the disk driver accepts requests one-at-a-time and serves
them in incoming order. This is easy to program and an intrinsically fair
algorithm. However, it is not optimal with respect to head movement because
it does not consider the location of the other queued requests. This results in
a high average seek time. Figure 9.12 shows an example of the application of
FCFS to a request of three queued blocks.

Shortest-Seek- Time First (SSTF)

At every point in time, when a data transfer is requested, SSTF selects among
all requests the one with the minimum seek time from the current head posi-
tion. Therefore, the head is moved to the closest track in the request queue.
This algorithm was developed to minimize seek time and it is in this sense
optimal. SSTF is a modification of Shortest Job First (SJF), and like SJF,
it may cause starvation of some requests. Request targets in the middle of
the disk will get immediate service at the expense of requests in the innermost
and outermost disk areas. Figure 9.13 demonstrates the operation of the SSTF
algorithm.
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Figure 9.13: SSTF disk scheduling.
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o SCAN

Like SSTF, SCAN orders requests to minimize seek time. In contrast to SSTF,
it takes the direction of the current disk movement into account. It first
serves all requests in one direction until it does not have any requests in
this direction anymore. The head movement is then reversed and service is
continued. SCAN provides a very good seek time because the edge tracks get
better service times. Note that middle tracks still get a better service then
edge tracks. When the head movement is reversed, it first serves tracks that
have recently been serviced, where the heaviest density of requests, assuming
a uniform distribution, is at the other end of the disk. Figure §.14 shows an
example of the SCAN algorithm.
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Figure 9.14: SCAN disk scheduling.

e C-SCAN

C-SCAN also moves the head in one direction, but it offers fairer service with
more uniform waiting times. It does not alter the direction, as in SCAN.
Instead, it scans in cycles, always increasing or decreasing, with one idle head
movement from one edge to the other between two consecutive scans. The
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performance of C-SCAN is somewhat less than SCAN. Figure 9.15 shows the
operation of the C-SCAN algorithm.
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Figure 9.15: C-SCAN disk scheduling.

Traditional file systems are not designed for employment in multimedia systems.
They do not, for example, consider requirements like real-time which are important
to the retrieval of stored audio and video. To serve these requirements, new policies
in the structure and organization of files, and in the retrieval of data from the disk,
must be applied. The next section outlines the most important developments in this
area.

9.5.2 Multimedia File Systems

Compared to the increased performance of processors and networks, storage devices
have become only marginally faster IMul91]. The effect of this increasing speed
mismatch is the search for new storage structires, and storage and retrieval mech-
anisms with respect to the file system. Continuous media data are different from
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discrete data in:

o Real Time Characteristics

As mentioned previously, the retrieval, computation and presentation of con-
tinuous media is time-dependent. The data must be presented (read) before
a well-defined deadline with small jitter only. Thus, algorithms for the stor-
age and retrieval of such data must consider time constraints, and additional
buffers to smooth the data stream must be provided.

o File Size

Compared to text and graphics, video and audio have very large storage space
requirements. Since the file system has to store information ranging from
small, unstructured units like text files to large, highly structured data units
like video and associated audio, it must organize the data on disk in a way
that efficiently uses the limited storage. For example, the storage requirements
of uncompressed CD-quality stereo audio are 1.4 Mbits/s; low but acceptable
quality compressed video still requires about 1Mbit/s using, e.g., MPEG-1.

o Multiple Data Streams

A multimedia system must support different media at one time. It does not
only have to ensure that all of them get a sufficient share of the resources,
it also must consider tight relations between different streams arriving from
different sources. The retrieval of a movie, for example, requires the processing
and synchronization of audio and video.

There are different ways to support continuous media in file systems. Basically there
are two approaches. With the first approach, the organization of files on disk remains
as is. The necessary real-time support is provided through special disk scheduling
algorithms and sufficient buffer to avoid jitter. In the second approach, the orga-
nization of audio and video files on disk is optimized for their use in multimedia
systems. Scheduling of multiple data streams still remains an issue of research.

In this section, the different approaches are discussed and examples of existing pro-
totypes are introduced. First, a brief introduction of the different storage devices
employed in multimedia systems is given. Then, the organization of files on disks
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is discussed. Subsequently, different disk scheduling algorithms for the retrieval of
continuous media are introduced.

Storage Devices

The storage subsystem is a major component of any information system. Due to
the immense storage space requirements of continuous media, conventional mag-
netic storage devices are often not sufficient. Tapes, still in use in some traditional
systems, are inadequate for multimedia systems because they cannot provide inde-
pendent accessible streams, and random access is slow and expensive.

Apart from common disks with large capacity, some multimedia applications, such
as kiosk systems, use CD-ROMs to store data. In general, disks can be characterized
in two different ways:

¢ First, how information is stored on them. There are re-writeable (magnetic
and optical) disks, write-once (WORM) disks and read-only disks like CD-
ROMs.

o The second distinctive feature is the method of recording. It is distinguished
between magnetic and optical disks. The main differences between them are
the access time and track capacity. The seek time on magnetic disks is typically
above 10 ms, whereas on optical disks, 200 ms is a common lower bound.
Magnetic disks have a constant rotation speed {Constant Angular Velocity,
CAV). Thus, while the density varies, the storage capacity is the same on
inner and outer tracks. Optical disks have varying rotation speed (Constant
Linear Velocity, CLV) and hence, the storage density is the same on the whole
disk.

Therefore, different algorithms for magnetic and optical disks are necessary. File
systems on CD-ROMs are defined in ISO 9660. They are considered to be closely
related to CD-ROMs and CD-ROM-XA. Very few variations are possible. Hence,
we will focus the description on algorithms applicable to magnetic storage devices.
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File Structure and Placement on Disk

In conventional file systems, the main goal of the file organization is to make efficient
use of the storage capacity (i.e., to reduce internal and external fragmentation) and
to allow arbitrary deletion and extension of files. In multimedia systems, the main
goal is to provide a constant and timely retrieval of data. Internal fragmentation
occurs when blocks of data are not entirely filled. On average, the last block of a file
is only half utilized. The use of large blocks leads to a larger waste of storage due
to this internal fragmentation. External fragmentation mainly occurs when files are
stored in a contiguous way. After the deletion of a file, the gap can only be filled by
a file with the same or a smaller size. Therefore, there are usually small fractions
between two files that are not used, storage space for continuous media is wasted.

As mentioned above, the goals for multimedia file systems can be achieved through
providing enough buffer for each data stream and the employment of disk schedul-
ing algorithms, especially optimized for real-time storage and retrieval of data. The
advantage of this approach (where data blocks of single files are scattered) is flexi-
bility. External fragmentation is avoided and the same data can be used by several
streams {via references). "Even using only one stream might be of advantage; for
instance, it is possible to access one block twice, e.g., when a phrase in a sonata
is repeated. However, due to the large seek operations during playback, even with
optimized disk scheduling, large buffers must be provided to smooth jitter at the
data retrieval phase. Therefore, there are also long initial delays at the retrieval of
continuous media.

Another problem in this context is the restricted transfer rate. With upcoming
disk arrays, which might have 100 and more parallel heads, the projected seek and
latency times of less than 10 ms and a block size of 4 Kbytes at a transfer rate
of 0.32 Gigabit/s will be achieved. But this is, for example, not sufficient for the
simultaneous retrieval of four or more production-level MPEG-2 videos compressed
in HDTV-quality that may require transfer rates of up to 100 Mbit/s. [Ste94a].

Approaches which use specific disk layout take the specialized nature of continuous
media data into account to minimize the cost of retrieving and storing streams. The
much greater size of continuous media files and the fact that they will usually be
retrieved sequentially because of the nature of the operation performed on them



280 CHAPTER 9. MULTIMEDIA OPERATING SYSTEMS

(such as play, pause, fast forward, etc.) are reasons for an optimization of the disk
layout. Our own application-related experience has shown that continuous media
streams predominantly belong to the write-once-read-many nature, and streams
that are recorded at the same time are likely to be played back at the same time
(e.g., audio and video of a movie) [LS93]. Hence, it seems to be reasonable to store
continuous media data in large data blocks contiguously on disk. Files that are
likely to be retrieved together are grouped together on the disk. Thus, interference
due to concurrent access of these files is minimized. With such a disk layout, the
buffer requirements and seek times decrease.

The disadvantage of the contiguous approach is external fragmentation and copying
overhead during insertion and deletion. To avoid this without scattering blocks in
a random manner over the disk, a multimedia file system can provide constrained
block allocation of the continuous media. In [GC92], different placement strategies
were compared. The size of the blocks (M) and the size of the gaps (G) between
them can be derived from the requirement of continuity. The size is measured in
terms of sectors. We assume that the data transfer rate r4 is the same as the disk
rotation rate (sectors/s). The continuity requirement in this case is met if the time
to skip over a gap and to read the next media block does not exceed the duration
of its playback Tpay(8) [RKVS2):

M (sectors)+G(sectors)
TPIGy( ) 2 T4t (sectorafs)

Since there are two variables in the equation, the storage pattern (M, G) is not
unique. There are several combinations possible to satisfy the above equation. Prob-
lems occur if the disk is not sufficiently empty, so that single data streams cannot
be stored exactly according to their storage pattern. In this case, the continuity
requirements for each block are not strictly maintained. To serve the continuity
requirements, read-ahead and buffering of a determined number of blocks must be
introduced. See, for example, [RV91, RKV92, VR93] for a detailed description of
this storage method.

Some systems using scattered storage make use of a special disk space allocation
mechanism to allow fast and efficient access. Abbott performed the pioneer work in
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this field [Abb84]. He was especially concerned about the size of single blocks and
their positions on disk. Another topic to be considered is the placement of different
streams. With interleaved placement, all n’th blocks of each stream are in close
physical proximity on disk. A contiguous interleaved placement is possible, as well as
a scattered interleaved placement. With interleaved data streams, synchronization
is much easier to handle. On the other hand, the insertion and deletion of single
parts of data streams become more complicated.

In [KWY94], a layout algorithm was developed and analyzed which provides a uni-
form distribution of media blocks on the disk after copying or writing audio and
video files. It takes into account that further files will be merged. Therefore, a
set of non-filled gaps is left. This uniform distribution is achieved by storing new
blocks at the center of existing — so far — non-filled gaps. With this “central merging
method” gaps are successively split into two new equal gaps. It was shown that the
mean efficiency of the secondary storage usage with this algorithm was about 75%
without violation of any real-time constraint [KWY94).

Disk Scheduling Algorithms

The main goals of traditional disk scheduling algorithms are to reduce the cost
of seek operations, to achieve a high throughput and to provide fair disk access
for every process. The additional real-time requirements introduced by multimedia
systems make traditional disk scheduling algorithms, such as described previously, °
inconvenient for multimedia systems. Systems without any optimized disk layout
for the storage of continuous media depend far more on reliable and efficient disk
scheduling algorithms than others. In the case of contiguous storage, scheduling
is only needed to serve requests from multiple streams concurrently. In [L593], a
round-robin scheduler is employed that is able to serve hard real-time tasks. Here,
additional optimization is provided through the close physical placement of streams
that are likely to be accessed together.

The overall goal of disk scheduling in multimedia systems is to meet the deadlines
of all time-critical tasks. Closely related is the goal of keeping the necessary buffer
space requirements low. As many streams as possible should be served concurrently,
but aperiodic requests should also be schedulable without delaying their service for
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an infinite amount of time. The scheduling algorithm must find a balance between
time constraints and efficiency.

Earliest Deadline First

Let us first look at the EDF scheduling strategy as described for CPU scheduling,
but used for the file system issue as well. Here the block of the stream with the
nearest deadline would be read first. The employment of EDF, as shown in Figure
9.16, in the strict sense results in poor throughput and excessive seek time. Further,
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Figure 9.16: EDF disk scheduling.

as EDF is most often applied as a preemptive scheduling scheme, the costs for
preemption of a task and scheduling of another task are considerably high. The
overhead caused by this is in the same order of magnitude as at least one disk seek.
Hence, EDF must be adapted or combined with file system strategies.
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SCAN-Earliest Deadline First

The SCAN-EDF strategy is a combination of the SCAN and EDF mechanisms
[RW93]. The seek optimization of SCAN and the real-time guarantees of EDF are
combined in the following way: like in EDF, the request with the earliest deadline
is always served first; among requests with the same deadline, the specific one that
is first according to the scan direction is served first; among the remaining requests,
this principle is repeated until no request with this deadline is left.

Since the optimization only applies for requests with the same deadline, its efficiency
depends on how often it can be applied (i.e., how many requests have the same or a
similar deadline). To increase this probability, the following tricky technique can be
used: all requests have release times that are multiples of the period p. Hence, all
requests have deadlines that are multiples of the peried p. Therefore, the requests
can be grouped together and be served accordingly. For requests with different
data rate requirements, in addition to SCAN-EDF, the employment of a periodic
fill policy is proposed [YV92] to let all requests have the same deadline. With this
policy, all requests are served in cycles. In every cycle, each request gets an amount
of service time that is proportional to its required data rate. The cycle length is
equal to the sum of the service times of all requests. Thus, in every cycle, all requests
can be given a deadline at the end of the cycle.

SCAN-EDF can be easily implemented. Therefore, EDF must be modified slightly.
If D; is the deadline of task i and NV; is the track position, the deadline can be mod-
ified to be D; + f(N;). Thus the deadline is deferred. The function f() converts the
track number of i into a small perturbation of the deadline, as shown in the example
of Figure 9.17. It must be small enough so that D; + f(Ni) < D; + f(N;) holds
for all D; < D;. For f(N;),it was proposed to choose the following function [RW93]:

F(N:) = gl

where Npa is the maximum track number on disk. Other functions might also be
appropriate.
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Figure 9.17: SCAN-EDF disk scheduling with Npmoz = 100 and f(N;) = N;/Npoz.

We enhanced this mechanism by proposing a more accurate perturbation of the
deadline which takes into account the actual position of the head (N). This posi--

tion is measured in terms of block numbers and the current direction of the head
movement {see also Figures 9.18 and 9.19):

1. If the head moves toward Np,,g, i.e., upward, then

fiN
if (N;2N)
N
l i L ] |
| 1 | 1 1
0 N; N Ninax
-
if (N;<N): (N,

Figure 9.18: Accurate EDF-SCAN algorithm, head moves upward.

(a) for all blocks N; located between the actual position N and Npgz, the



9.5. FILE SYSTEMS ' ' 285

perturbation of the deadline is:
f(N)y == forall N;2 N

(b) for all blocks N; located between the actual position and the first block
(no. 0):

F(N;) = Ngga=ts for all Ni< N

9. If the head moves downward towards the first blocks, then
if (N 2N): (N

P B
if (N <N): (N}
Figure 9.19: Accurate EDF-SCAN algorithm, head moves downward.

(a) for all blocks located between the actual position and Npyar:
f(N:)) = g forallN;> N

(b) for all blocks located between this first block with the block number 0
and the actual position:

JN:)y =520 forall Ny < N

Qur algorithm is more computing-intensive than those with the simple calculation of
[RW93]. In cases with only a few equal deadlines, our algorithm provides improve-
ments and the expenses of the calculations can be tolerated. In situations with
many, i.e., typically more than five equal deadlines, the simple calculation provides
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sufficient optimization and additional calculations should be avoided. SCAN-EDF
was compared with pure EDF and different variations of SCAN. It was shown that
SCAN-EDF with deferred deadlines performed well in multimedia environments
[RW93].

Group Sweeping Scheduling

With Group Sweeping Scheduling (GSS), requests are served in cycles, in round-
robin manner [CKY93]. To reduce disk arm movements, the set of n streams is
divided into g groups. Groups are served in fixed order. Individual streams within
a group are served according to SCAN; therefore, it is not fixed at which time or
order individual streams within a group are served. In one cycle, a specific stream
may be the first to be served; in another cycle, it may be the last in the same group.
A smoothing buffer which is sized according to the cycle time and data rate of the
stream assures continuity. If the SCAN scheduling strategy is applied to all streams
of a cycle without any grouping, the playout of a stream cannot be started until
the end of the cycle of its first retrieval (where all requests are served once) because
the next service may be in the last slot of the following cycle. As the data must be
buffered in GSS, the playout can be started at the end of the group in which the
first retrieval takes place. Whereas SCAN requires buffers for all streams, in GSS,
the buffer can be reused for each group. Further optimizations of this scheme are
proposed in [CKY93]. In this method, it is ensured that each stream is served once
in each cycle. GSS is a trade-off between the optimization of buffer space and arm
movements. To provide the requested guarantees for continuous media data, we
propose here to introduce a “joint deadline” mechanism: we assign to each group -
of streams one deadline, the “joint deadline.” This deadline is specified as being
the earliest one out of the deadlines of all streams in the respective group. Streams
are grouped in such a way that all of them comprise similar deadlines. Figure 9.20 -
shows an example of GSS.
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Figure 9.20: Group sweeping scheduling as a disk access strategy.

Mixed Strategy

In [Abb84], a mized strategy was introduced based on the shortest seek (also called
greedy strategy) and the balanced strategy. As shown in Figure 9.21, every time
data are retrieved from disk they are transferred into buffer memory allocated for
the respective data stream. From there, the application process removes them one
at a time. The goal of the scheduling algorithm is:

¢ To maximize transfer efficiency by minimizing seek time and latency.

o To serve process requirements with a limited buffer space.

With shortest seek, the first goal is served, i.e., the process of which data block is
closest is served first. The balanced strategy chooses the process which has the least
amount of buffered data for service because this process is likely to run out of data.
The crucial part of this algorithm is the decision of which of the two strategies must
be applied (shortest seek or balanced strategy). For the employment of shortest,
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Figure 9.21: em Mixed disk scheduling strategy.

seek two criteria must be fulfilled: the number of buffers for all processes should be
* balanced (i.e., all processes should nearly have the same number of buffered data)
and the overall required bandwidth should be sufficient for the number of active
processes, so that none of them will try to immediately read data out of an empty
buffer. In {Abb84], the urgency is introduced as an attempt to measure both. The
urgency is the sum of the reciprocals of the current “fullness” (amount of buffered’
data). This number measures both the relative balance of all read processes and the
number of read processes. If the urgency is large, the balance strategy will be used;
if it is small, it is safe to apply the shortest seek algorithm. o

Continuous Media File System

CMFS Disk Scheduling is a non-preemptive disk scheduling scheme designed for the
Continuous Media File System (CMFS) at UC-Berkeley [AOG91]. Different policies
can be applied in this scheme. Here the notion of the slack time H is introduced.
The slack time is the time during which CMFS is free to do non-real-time operations
or workahead for real-time processes, because the current workahead of each process
is sufficient so that no process would starve, even if it would not be served for H
seconds. The considered real-time scheduling policies are:
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o The Static/Minimal policy is based on the minimal Workahead Augmenting
Set (WAS). A process p; reads a file at a determined rate R;. To each process,
a positive integer M; is assigned which denotes the time overhead required to
read a block covering, for example, the seek time. The CMFS performs a set of
operations (i.e., disk operations required by all processes) by seeking the next
block of a file and reading M; blocks of this file. Note, we consider only read
operations; the same also holds, with minor modifications, for write operations.
This seek is done for every process in the system. The data read by a process
during this operation “last” “—’fh’:—A, where A is the block size in bytes. The
WAS is a set of operations where the data read for each process “last longer”
than the worst-case time to perform the operations (i.e., the sum of the read
operations of all processes is less than the time read data last for a process).
A schedule is derived from the set that is workahead-augmenting and feasible
(i.e., the requests are served in the order given by the WAS). The Minimal
Policy, the minimal WAS, is the schedule where the worst-case elapsed time
needed to serve an operation set is the least (i.e., the set is ordered in a way
that reduces time needed to perform the operations, for example, by reducing
seek times). The Minimal Policy does not consider buffer requirements. If
there is not enough buffer, this algorithm causes a buffer overflow. The Static
Policy modifies this schedule such that no block is read if this would cause
a buffer overflow for that process. With this approach, starvation is avoided,
but its use of short operations causes high seek overhead.

o With the Greedy Policy, a process is served as long as possible. Therefore, it
computes at each iteration the slack time H. The process with the smallest
workahead is served. The maximum number n of blocks for this process is
read; n is determined by H (the time needed to read n blocks must be less
than or equal to H) and the currently available buffer space.

o The Cyclical Plan Policy distributes the slack time among processes to maxi-
mize the slack time. It calculates H and increases the minimal WAS with H
milliseconds of additional reads; an additional read for each process is done
immediately after the regular read determined by the minimal WAS. This pol-
icy distributes workahead by identifying the process with the smallest slack
time and schedules an extra block for it; this is done until H is exhausted. The
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number of block reads for the least workahead is determined. This procedure
is repeated every time the read has completed.

The Aggressive version of the Greedy and the Cyclical Plan Policy calculates H
of all processes except the least workahead process that is immediately served by
both policies. If the buffer size limit of a process is reached, all policies skip to
the next process. Non-real-time operations are served if there is enough slack time.
Performance measurements of the above introduced strategy showed that Cyclical
Plan increases system slack faster at low values of the slack time (which is likely
to be the case at system setup). With a higher system slack time, apart of the
Static/Minimal Policy, all policies perform about the same.

All of the disk scheduling strategies described above have been implemented and
tested in prototype file systems for continuous media. Their efficiency depends on
the design of the entire file system, the disk layout, tightness of deadlines, and last
but not least, on the application that is behaving. It is not yet common sense which
algorithm is the “best” method for the storage and retrieval of continuous media
files. Further research must show which algorithm serves the timing requirements
of continuous media best and ensures that aperiodic and non-real-time requests are
efficiently served.

Data Structuring

Continuous media data are characterized by consecutive, time-dependent logical
data units. The basic data unit of a motion video is a frame. The basic unit of
audio is a sample. Frames contain the data associated with a single video image,
a sample represents the amplitude of the analog audio signal at a given instance.
Further structuring of multimedia data was suggested in the following way [RV91,
Ran93, SF92]: a strand is defined as an immutable sequence of continuously recorded
video frames, audio samples, or both. It means that it consists of a sequence of
blocks which contain either video frames, audio samples or both. Most often it
includes headers and further information related to the type of compression used.
The file system holds primary indices in a sequence of Primary Blocks. They contain
mapping from media block numbers to their disk addresses. In Secondary Blocks
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pointers to all primary blocks are stored. The Header Block contains pointers to all
secondary blocks of a strand. General information about the strand like, recording
rate, length, etc., is also included in the header block.

Media strands that together constitute a logical entity of information (e.g., video
and associated audio of a movie) are tied together by synchronization to form a mul-
timedia rope. A rope contains the name of its creator, its length and access rights.
For each media strand in this rope, the strand ID, rate of recording, granularity of
storage and corresponding block-level are stored (information for the synchroniza-
tion of the playback start for all media at the strand interval boundaries). Editing
operations on ropes manipulate pointers to strands only. Strands are regarded as
immutable objects because editing operations like insert or delete may require sub-
stantial copying which can consume significant amounts of time and space. Intervals
of strands can be shared by different ropes. Strands that are not referenced by any
rope can be deleted, and storage can be reclaimed [RV91)]. The following interfaces
are the operations that file systems provide for the manipulation of ropes:

e RECORD |media] [requestID, mmRopelD]
A multimedia rope, represented by mmRopelD and consisting of media strands,
is recorded until a STOP operation is issued.

» PLAY [mmRopelD, interval, media] requestID
This operation plays a multimedia rope consisting of one or more media
strands.

o STOP [requestID]
This operation stops the retrieval or storage of the corresponding multimedia
rope.

o Additionally, the following operations are supported:

— INSERT [baseRope, position, media, withRope, withInterval]

—~ REPLACE [baseRope, media, baselnterval, withRope, withInterval]
— SUBSTRING [baseRope, media, interval}

— CONCATE [mmRopelD1, mmRopelD2]



202 CHAPTER 9. MULTIMEDIA OPERATING SYSTEMS

— DELETE [baseRope, media, interval]

Figure 9.22 provides an example of the INSERT operation, whereas Figure
9.23 shows the REPLACE operation.
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Figure 9.22: INSERT operation.
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Figure 9.23: REPLACE operation.

The storage system is divided into two layers:

¢ The rope server is responsible for the manipulation of multimedia ropes. It
communicates with applications, allows the manipulation of ropes and com-
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municates with the underlying storage manager to record and play back mul-
timedia strands. It provides the rope abstraction to the application. The rope
access methods were designed similarly to UNIX file access routines. Status
messages about the state of the play or record operation are passed to the
application.

s The storage manager is responsible for the manipulation of strands. It places
the strands on disk to ensure continuous recording and playback. The interface
to the rope server includes four primitives for manipulating strands:

1. “PlayStrandSequence” takes a sequence of strand intervals and displays
the given time interval of each strand in sequence.

9. “RecordStrand” creates a new strand and records the continuous media
data either for a given duration or until StopStrand is called.

3. “StopStrand” terminates a previous PlayStrandSequence or RecordStrand
instance.

4, “DeleteStrand” removes a strand from storage.

The experimental Video File Server introduced in [Ran93] supports integrated stor-
age and retrieval of video. The “Video Rope Server” presents a device-independent
directory interface to users (Video Rope). A Video Rope is characterized as a hier-
archical directory structure constructed upon stored video frames. The “Video Disk
Manager” manages a frame-oriented motion video storage on disk, including audio
and video components.

9.6 Additional Operating System Issues

9.6.1 Interprocess Communication and Synchronization

In multimedia systems, interprocess communication refers to the exchange of dif-
ferent data between processes. This data transfer must be very efficient because
continuous media require the transfer of a large amount of data in a given time
span. For the exchange of discrete media data, the same mechanisms are used as
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in traditional operating systems. Data interchange of continuous media is closely
related to memory management and is discussed in the respective section.

Synchronization guarantees timing requirements between different processes. In
the context of multimedia, this is an especially interesting aspect. Different data
streams, database entries, document portions, positions, processes, etc., must be
synchronized. Thus, synchronization is important for various components of a mul-

timedia system and therefore is not included in this discussion on operating systems.
o

9.6.2 Memory Management

The memory manager assigns physical resource memory to a single process. Virtual
memory is mapped onto memory that is actually available. With paging, less fre-
quently used data is swapped between main memory and external storage. Pages are
transferred back into the main memory when data on them is required by a process.
Note, continuous media data must not be swapped out of the main memory. If a
page of virtual memory containing code or data required by a real-time process is
not in real memory when it is accessed by the process, a page fault occurs, meaning
that the page must be read from disk. Page faults affect the real-time performance
very seriously, so they must be avoided. A possible approach is to lock code and/or
data into real memory. However, care should be taken when locking code and/or
data into real memory. Real memory is a very scarce resource to the system. Com-
mitting real memory by pinning (locking) will decrease overall system performance.
The typical AIX kernel will not allow more than about 70% of real memory to be
committed to pinned pages [IBM91].

The transmission and processing of continuous data streams by several components
require very efficient data transfer restricted by time constraints. Memory alloca-
tion and release functions provide well-defined access to shared memory areas. In
most cases, no real processing of data, but only a data transfer, is necessary. For
example, the camera with a digitalization process is the source and the presentation
process is the sink. The essential task of the other components is the ezchange of
continuous media data with relatively high data rates in real-time. Processing in-
volves computing, adding, interpreting and stripping headers. This is well-known in
communications [MR93b]. The actual implemeatation can either be with external
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devices and dedicated hardware in the computer, or it can be realized with software
components.

Early prototypes of multimedia systems incorporate audio and video based on ex-
ternal data paths only. Memory management, in this case, has a switching function
only, i.e., to control an external switch.

A first step toward integration was the incorporation of the external switch functior.
into the computer. Therefore, some dedicated adapter cards that are able to switch
data streams with varying data rates were employed.

A complete integration can be achieved with a full digital approach within the
computer, i.e., to offer a pure software solution. Data are transmitted between single
components in real-time. Copy operations are — as far as possible - reduced to the
exchange of pointers and the check of access rights. This requires the access of a
shared address space. Data can also be directly transferred between different adapter
cards. The transfer of continuous media data takes place in a real-time environment.
This exchange is controlled, but not necessarily executed, by the application. The
data transfer must be performed by processes running in a real-time environment.
The application running in a non-real-time environment generates, manipulates and
consumes these data streams at an operating system interface.

9.6.3 Device Management

Device management and the actual access to a device allows the operating system
to integrate all hardware components. The physical device is represented by an
abstract device driver. The physical characteristics of devices are hidden. In a
conventional system, such devices include a graphics adapter card, disk, keyboard
and mouse. In multimedia systems, additional devices like cameras, microphones,
speakers and dedicated storage devices for audio and video must be considered. In
most existing multimedia systems, such devices are not often integrated by device
management and the respective device drivers.

Existing operating system extensions for multimedia usually provide one common
system-wide interface for the control and management of data streams and devices.
In Microsoft Windows and OS/2 this interface is known as the Media Control Inter-



296 CHAPTER 9. MULTIMEDIA OPERATING SYSTEMS

face (MCI). The multimedia extensions of Microsoft Windows, for example, provide
the foliowing classes of function calls:

» System commands are not forwarded to the single device driver (MCI driver);
they are served by a central instance. An example of such a command is the
query concerning all devices connected to the system (Sysinfo).

s Each device driver must be able to process compulsory commands. For in-
stance, the query for specific characteristics {capability info} and the opening
of a device {(open) are such commands.

o Basic commands refer to characteristics that all devices have in common. They
can be supported by drivers. If a device driver processes such a command, it
must consider all variants and parameters of the command. A data transmis-
sion is typically started by the basic command “play.”

e Extended comimands may refer to both device types and special single devices.
The “seek”™ command for the positioning on an audio CD is an example. On
the basis of a controllable camera, the required concepts are explained in more
detail. A camera has functions to adjust the focal length, focus and position.
An abstraction of the functionality provided by the physical camera as an video
input device covers the following lavers, which relate to different components
in a multimedia system:

— The application has access to a logical camera without knowledge about
the specific control functions of the camera. The focal length is adjusted
in millimeters. The driver translates a specific “set focal length com-
mand” into a sequence of camera hardware control commands and passes
them to the control logic. The provision of such an abstract interface and
the transformation into hardware-dependent commands is a task of the
device management of a multimedia operating system.

— Different inpuot device classes have similar characteristics. The zoom op-
eration of a camera can be applied in a similar way to the presentation of
a still image. The still image could be zoomed. For example, consider an
image stored on a Photo-CD with a given resolution. The zoom opera-
tion could result in the presentation either of the image with its specified
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resolution, or of a particular section of the image. This kind of abstrac-
tion is part of the programming environment of a multimedia system and
not a task of an operating system, although in some cases it is performed
by the operating system. The basic commands define several operations
supported by different devices. The basic command used for the start
of a data transmission between the camera and the video window of an
application — called the play command in this context - can be used in a
second realization for file transfer - as a kind of copy command.

To complete the description of the camera control, the positioning of the camera is
discussed. To change the position of the camera, the application specifies the target
coordinates in a polar coordinate system. Yet, a concrete camera control can only
execute commands like “move swivel slope head in a specific direction with a defined
speed.” The direction can be “left” or “right,” respectively “up” or “down.” Eight
different speed levels are given, but it is only possible to change the speed in steps
of the maximum two levels. During acceleration, consecutive commands with speed
levels 2, 4, 6, 8 must be executed. It is the task of the camera driver to perform the
mapping of coordinates into this positioning controlled by time and speed.

To define the required application interface, the selectable controi class can be sub-
divided into four function categories [RSSS90]:

1. Defined, compulsory and generic: all operations that must be provided for each
device driver, regardless of its specific functionality, belong to this category.
This corresponds to the above-mentioned commands of the MCIL.

2. Defined, compulsory and device specific: all functions and parameters specified
in this category must be provided by the device driver. Therefore, there exisis
a defined interface in the respective operating system. For example, a camera
driver must be able to answer an inquiry for an eventual existing auto focus
mechanism.

3. Defined but not compulsory: for each device type, a set of functions is defined
which covers all known possibilities. The functions cannot be provided by ali
different devices and drivers. In tlie case of the camera, such functions are,
for example, to position and adjust the focal length, because not every camera
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has these facilities. The interface is defined keeping in mind what is possible
and meaningful. If such a function is employed, although it is not supported
by the implementation, a well-defined error handling mechanism applies. The
application can handle these errors, and therefore it is independent of the
connected physical devices.

4. Not defined and not compulsory: we must be aware that there will always
be unpredictable new devices and special developments. Hence, the operating
system provides a fourth category of functions to cover all these calls.

An unambiguous definition of these categories allows easier integration of devices
into the programming environment. The multimedia extensions of today’s operating
systems incorporate device management with a first step of functional distinction
toward the above ocutlined categories.

9.7 System Architecture

The employment of continuous media in multimedia systems also imposes additional,
new requirements to the system architecture. A typical multimedia application
does not require processing of audio and video to be performed by the application
itself. Usually, data are obtained from a source (e.g., microphone, camera, disk,
network) and are forwarded to a sink (e.g., speaker, display, network). In such
a case, the requirements of continuous media data are satisfied best if they take
“the shortest possible path” through the system, i.e., to copy data directly from
adapter to adapter. The program then merely sets the correct switches for the
data flow by connecting sources to sinks. Hence, the application itself never really
touches the data as is the case in traditional processing. A problem with direct
copying from adapter to adapter is the control and the change of quality of service
parameters. In multimedia systems, such an adapter to adapter connection is defined
by the capabilities of the two involved adapters and the bus performance. In today’s
systems, this connection is static. This architecture of low-level data streaming
corresponds with proposals for using additional new busses for audio and video
transfer within a computer. It also enables a switch-based rather than a bus-based
data transfer architecture {Fin91, HM91]. Note, in practice we encounter headers
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and trailers surrounding continnous media data coming from devices and being
delivered to devices. In the case of compressed video data, e.g., MPEG-2, the
program stream contains several layers of headers compared with the actual group
of pictures to be displayed. '

Most of today’s multimedia systems must coexist with conventional data processing.
They share hardware and software components. For instance, the traditional way
of protocol processing is stow and complicated. In high-speed networks, protccol
processing is the bottleneck because it cannot provide the necessary througlput.
Protocols like VMTP, NETBLT and XTP try to overcome this ' awback, bul re-
search in this area has shown that throughput in most communication systems is not
bounded by protocol mechanisms, but by the way they are implemented [CIRS89].
A time-intensive operation is, for example, physical buffer copying. Since the mem-
ory on the adapter is not very large and it may not store all related compressed
images, data must be copied at least once from adapter into main memory. Further
copying should be avoided. Appropriate buffer management allows operations on
data without performing any physical copying. In operating systems like UNIX, the
buffer management must be available in both the user and the kernel space. The
data need to be stored in shared memory to avoid copying between user and kernel
space. For further performance improvement, protocol processing should be done in
threads with upcalls, i.e., the protocol processing for an incoming message is done
by a single thread. A development to support such a protocol process management
is, for example, the x-Kernel.

The architecture of the protocol processing system is just one issue to be considered
in the system architecture of multimedia supporting operating systems. Multimedia
data should be delivered from the input device (e.g., CD-ROM) to an output device
(e.g.. a video decompression board) across the fastest possible path. The paradigm
of streaming from source to sink is an appropriate way of doing this. Hence, the
multimedia application opens devices, establishes a connection between them, starts
the data flow and returns to other duties.

As stated above, the most dominant characteristic of multimedia applications is
to preserve the temporal requirement at the presentation time. Therefore, multi-
media data is handled in a Real-Time Enviroriment {RTE}, L.e., its processing is
scheduled according to the inherert timing requirements of multimedia data. On
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a multimedia computer, the RTE will usually coexist with a Non-Real- Time Enuvi-
ronment (NVRTE). The NRTE deals with all data that have no timing requirements.
Figure 9.24 shows the approached architecture. Multimedia I/Q devices are, in gen-

Application(s)

Stream Control Interface(s)

Figure 9.24: Real-time and non-real-time environments.

eral, accessed from both environments. Data such as a video frame, for example,
is passed from the RTE to the display. The RTE is controlled by related functions
in the NRTE. The establishment of communication connections at the start of a
stream must not obey timing requirements, but the data processing for established
connections is compelied. All control functions are performed in the NRTE. The
application usually calls only these control functions and is not involved in active
continuous media data handling. Therefore, the multimedia application itself typi-
cally runs in the NRTE and is shielded from the RTE. In some scenarios, users may
want applications to “process” continuous media data in an application-specific way.
In our madel, such an application comptises a module running as stream handler in
the RTE. The rest of the applications run in the NRTF, using the available stream
control interfaces. System programs, such as communication protocol processing
and database data transfer programs, make use of this programming in the RTE.
- Whereas applications like authoring tools and media presentation programs are re-
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lieved from the burden of programming in the RTE, they just interface and control
the RTE services. Applications determine processing paths which are needed for
their data processing, as well as the control devices and paths.

To reduce data copying, buffer management functions are employed in the RTE. This
buffer management is located “between” the stream handlers. Stream handiers are
entities in the RTE which are in charge of multimedia data. Typical stream han-
dlers are filier and mixing functions, but they are also parts of the communicatior.
subsystem described above and can be treated in the same way. Each stream han-
dler has endpoints for input and output through which data units flow. The stream
handler consumes data units from one or more input endpoints and generates data
units through one or more output endpoints.

Multimedia data usually “enters” the computer through an input device, a source,
and “leaves” it through an output device, a sink (where storage can serve as an /0
device in both cases). Sources and sinks are implemented by a device driver. Appli-
cations access stream handlers by establishing sessions with them. A session consti-
tutes a virtual stream handler for exclusive use by the application which has created
it. Depending on the required QoS of a session, an underlying resource management
subsystem multiplexes the capacity of the underlying physical resources amoug the
sessions. To manage the RTE data flow through the stream handlers, control op-
erations are used which belong to the NRTE. These functions make up the stream
management system in the multimedia architecture. Operations are provided by alt
stream handlers (e.g., operations to establish sessions and connect their endpoints)
and operations specific to individual stream handlers usually determine the content
of a multimedia stream and apply to particular I/O devices.

Some applications which are all in the NRTE have the need to correlate discrete data
such as text and graphics with continuous streams, or to post-process multimedia
data (e.g., to display the time stamps of a video stream like a VCR). These applica-
tions need to obtain segments of multimedia at the stream handler interface. Witk
a grab function, the segments are copied to the application as if stream duplication
took place. Due to this operation, the data units lose their temporal properties
because they enter the NRTE. Applications that must generate or transform multi-
media data keeping real-time characteristics must use a stream handler included in
the RTE, which performs the required processing,.
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The synchronization of streams is a function that is provided by the stream man-
agement subsystem. Synchronization is specified on a connection basis and can be
expressed using the notions of a clock or logical time systems. It determines points
in time at which the processing of data units shall start. For regular streams, the
stream rates can be used to relate data units to synchronization points. Sequ-.ice
numbers can accomplish the same task. Time stamps are a more versatile means for
synchronization as they can also be used for non-periodic traffic. Synchronization is
often implemented by delaying the execution of a thread or by delaying the receive
operation on a buffer exchanged between stream handlers.

Many operating systems already provide extensions to support multimedia applica-
tions. In the next paragraphs, three of these multimedia extensions are presented.

9.7.1 UNIX-based Systems

In the UNIX operating system, the applications in the user space generally make
use of system calls in the NRTE. Either the whole operating system or a part of it
is also located in the NRTE and in the kernel space. Extensions to the operating
system providing real-time capabilities make up the RTE part of the kernel space
(see Figure 9.25).

The actual implementation of the RTE varies substantially:

¢ SUN OS does not yet provide an RTE.

o AlX includes real-time priorities. This feature provides the basis for the RTE
in the AIX-based Ultimedia™server.

o The IRIX operating system on Silicon Graphics Workstations has real-time
capabilities, i.e., it includes an RTE.

9.7.2 QuickTime

QuickTime is a software extension to the Macintosh System. It provides the ca-
pability to capture, store, manage, synchronize and display continuous media data.
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Figure 9.25: NRTE and RTFE in UNIX systems.

A more detailed description can be found in [DM92]. It introduces digitized video
as standard data type into the system, and it allows an easier handling of other
continuous media like audio and animation. Standard applications are enhanced
by multimedia capabilities. Apple has announced QuickTime to be available for
other operating systems like Windows and UNIX as well. An integration of future
hardware and software developments is possible.

The standard data type of QuickTime is a movie. All kinds of continuous media data
are stored in movie documents. Additionally, time information like the creation and
modification date, duration, etc., are also kept in the movie document. With each
movie, a poster frame is associated that appears in the dialog box. Other information
like current editing selection, spatial characteristics (transformation matrix, clipping
region) and a list of one or more tracks are associated with the movie. A track
represents a stream of information (audio or video data) that flows in parallel to
every other track. With each track, information like creation and modification
data, duration, track number, spatial characteristics (transformation matrix, display
window, clipping region), a list of related tracks, volume and start time, duration,
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playback rate and a data reference for each media segment is stored. A media
segment is a set of references to audio and video data, including time information
(creation, modification, duration), language, display or sound quality, media data
type and data pointers. Future releases will have, apart from audio and video
tracks, “custom tracks” such as a subtitle track. Al tracks can be viewed or heard
concurrently. The tracks of a movie are always synchronized. Since movies are
documents they cannot only be played (including pausing, stepping through, etc.),
but they can also be edited. Operations like cut, copy and paste are possible.
Movie documents can be part of other documents. QuickTime is scalable. Hardware
components like accelerator or compressor/decompressor cards can be employed.

Application Application Application Application Application
Toolbo Component Manager Compression
X Minager

Sequence || Move lmage Clock
Grabber Cootrofler || | Compressors

l T .

! Sequerce Video Application
Grabber Digitizer Defined

Chapnels Componeat

Figure 9.26: QuickTime architecture.

The QuickTime architecture comprises three major components (see Figure 9.26):
the Movie Toolboz offers a set of services to the user that allows him/her to in-
corporate movies into applications. These applications may directly manipulate
characteristics of audio and video data of movies. The movie is integrated in the
desktop environment. Movie data can be imported and exported with the systemn
clipboard and a movie can be edited within the Movie Toolbeox.
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The second component, known as the Image Compression Manager, provides a
common interface for compression and decompression of data, independent of the
implementation, to and from hard disk, CD-ROM and floppy. It offers a directory
service to select the correct compression component. Different interface levels for
different application requirements are available. The compression techniques are a
proprietary image compression scheme, a JPEG implementation and a proprietary
video compressor for digitized video data (leading to a compression ratio of 8:1,
and if temporal redundancies are also removed, to a ratio of 25:1). An animation
compressor can compress digital data in lossy and lossless (error-free) modes. A
graphics compressor is also available. The pixel depth conversion in bits per pixel
can be used as a filter to be applied in addition to other compressors.

The Component Manager provides a directory service related to the components.
It is the interface between the application and various system components. It
shields developers from having to deal with the details of interfacing with spe-
cific hardware. In the Component Manager, object-oriented concepts {e.g., hierar-
chical structure, extensible class libraries, inheritance of component functionality,
instance-based client /server model) are applied. Thus, applications are independent
of implementations, can easily integrate new hardware and software and can adapt
to the available resources. The components managed by the Component Manager
are the Clock, the Image Compressor and Image Decompressor, the Movie Con-
troller, the Sequence Grabber, Sequence Grabber Channel and the Video Digitizer.
Furthermore, application-defined components can be added.

There is a simple resource management scheme applied to the local environment
only: in the case of scarce resources, audio is prioritized over video, i.e., audio
playback is maintained (if possible) whereas single videe frames might be skipped.
If an application calls the Movie Toolbox during playback, there are the following
possibilities to handle these calls:

e The commmonly used mode is a preemptive calling sequence, where the appli-
cation returns to the system after each update. This might cause jerky movie
output.

¢ With a non-preemptive calling sequence, the application does not return to the
system while a movie is played. This counteracts the multitasking capability.
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¢ The high-performance controlled preemptive calling sequence is a compromise,
where the application gives up control to the Movie Toolbox for a specified
time period (e.g., 50 ms).

As an additional resource management scheme for better performance, it is recom-
mended to turn off the virtual memory while playing QuickTime movies. If it is on,
it will cause the sound to skip and it will lower the frame rate during the playback
of a movie. However, no RTE exists.

The concept of components in QuickTime allows for easy extension without affect-
ing applications. It attempts to form a hierarchical structure of functionality by
components. The movie controller component eases user interface programming.
A disadvantage of QuickTime is that there is no clear layering of abstractions for
programmers and that the functionality of managers and components sometimes
overlaps.

9.7.3 Windows Multimedia Extensions

The Microsoft Windows Multimedia Ertensions (WME) are an enhancement to the
Windows programming environment. They provide high-level and low-level services
for the development of multimedia applications for application developers, using the
extended capabilities of a multimedia personal computer [Win91].

The following services for multimedia applications are provided by the WME:

o A Media Control Interface (MCI) for the control of media services, It com-
prises an extensible string-based and message-based interface for communica-
tion with MCI device drivers. The MCI device drivers are designed to support
the playing and recording of waveform audio, the playing of MIDI (Musical
Instrument Digital Interface) files, the playing of compact disk audio from a
CD-ROM disk drive and the control of some video disk players.

o A Low-level API (Application Programming Interface) provides access to multi-
media-related services like playing and recording audio with waveform and
MIDI audio devices. It also supports the handling of input data from joy-
sticks and precise timer services.
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o A multimedia file 1/0 service provides buffered and unbuffered file I/0. It
also supports the standard IBM/Microsoft Resource Interchange File Format
(RIFF) files. These services are extensible with custom I/O procedures that
can be shared among applications.

o The most important device drivers available for multimedia applications are:

— An enhanced high-resolution video display driver for Video 7 and Paradise
VGA cards providing 256 colors, improved performance, and other new
features.

— A high-resolution VGA video display driver allowing the use of a custom
16-color palette as well as the standard palette.

— A low resolution VGA video display driver providing 320-by-320 resolu-
tion with 256 colors.

— The Control Panel Applets that allow the user to change display drivers,
to set up a screen saver, to install multimedia device drivers, to assign
waveform sounds to system alerts, to configure the MIDI Mapper and
to calibrate joysticks. A MIDI Mapper supports the MIDI patch service
that allows MIDI files to be authored independently of end-user MIDI
synthesizer setups.

Figure 9.27 shows the rough architecture of MS Windows Multimedia Extensions:
MMSYSTEM library provides the Media Control Interface services and low-level
multimedia support functions. The communication between the low-level MMSYS-
TEM functions and multimedia devices, such as waveform, MIDI, joystick and timer,
is provided by the multimedia device drivers. The high-level control of media devices
is provided by the drivers for the Media Control Interface.

The main concepts of the architecture of the Multimedia Extensions are extensibility
and device-independence. They are provided by a translation layer (MMSYSTEM)
that isolates applications from device drivers and centralizes device-independent
code, run-time linking that allows the MMSYSTEM translation layer to link to the
drivers it needs and a well-defined and consistent driver interface that minimizes the
development of specialized code and makes the installation and upgrade processes

easler.
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Figure 9.27: MS Windows Multimedia Ezrtensions architecture,

9.7.4 0OS/2 Multimedia Presentation Manager/2

The Multimedia Presentation Manager/2 (MMPM/2) is part of IBM’s Operating
System/2(0S/2). 0S/2is a platform well-suited for multimedia because it supports,
e.g., preemptive multitasking, priority scheduling, overlapped 1/0 and demand-
paged virtual memory storage. Figure 9.28 provides an overview of the architecture.

The Media Control Interface (MCI) is a device-independent programming inter-
face that offers commands similar to an entertainment system. The following list
comprises a selection of typical MCI-commands:

” W

e “Open,” “close,” and “status of a device” are provided for all devices.

o For playback and recording device-dependent “play,” “record,” “resume,” “stop,”
“cue” aad “seek” commands exist.

e “Set cue point” allows for synchronization.
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Figure 9.28: The architecture of the 0S/2 Multimedia Presentation Manager/2.

o “Get table of contents of a CD-ROM” is an example of a device-specific com-
mand.

A logical device in MMPM/2 is a logical representation of the functions available
from either a hardware device, a hardware device with software emulation or a
software emulation only. The actual implementation is not relevant to an application
because the MCI provides this device independence.

Examples of logical devices are an “Amplifier-Mixer Device,” similar to a home
stereo amplifier-mixer, a “Waveform Audio Device” to record and play digital audio,
a sequencer device for MIDI-sounds, a “CD Audio Device” that provides access to
audio compact disks (CD-DA), a “CD-XA Device” to support CD-ROM/XA disks
and a “Videodisk Device” to control video disk players which deliver analog video
and audio signals.

The multimedia /O functions enable media drivers and applications to access and
manipulate data objects that are stored in memory or on a file system. Storage
system I/O processes handle the access to specific storage devices. File format I /O
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processes manage the access to data stored in file formats like “RIFF Waveform”
and “BitMap.” They use the services of the storage system I/0 processes.

The implementation of data streaming and synchronization is supported by the
Stream Programming Interface (SPI). It provides access to the SyncStream Manager
that coordinates and manages the data buffers and synchronization data. Pairs of
stream handlers implement the transport of data from source to sink.

Ease of use is supported in MMPM/2 on several levels. The installation of programs
and setup of devices is supported by unified graphical user interfaces that centralize
these functions for easy access. Also, a style guide for applications ensures that there
1s a common look and feel of applications that correspond to this guide. There is
a high degree of flexibility because application developers and device providers can
integrate their own logical devices, I/O processes and stream handlers. So, new
media devices, data formats, etc. can be integrated in MMPM/2 and can be used
by every application using the MCI.

08§/2 with MMPM/2 is a platform that has some basic operating mechanisms to
support the processing and presentation of multimedia information as it is needed
in multimedia application scenarios. It incorporates an RTE, implemented as a set
of device drivers. MMPM/2 is an advanced platform for the development of these
multimedia applications, providing the media and stream abstractions.

Finally it should be pointed out that MMPM/2 and WME look very similar and
have many concepts in common.

9.8 Concluding Remarks

In this chapter we addressed the major issues of operating systems related to multi-
media data processing, namely, resource management, scheduling and file systems.
This discussion includes the most relevant existing architectures of such systems.

The concepts employed by current multimedia operating systems have been initially
used in real-time systems and were adapted to the requirements of multimedia data.
Today’s operating systems incorporate these functions either as device drivers or as
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extensions based on the existing operating system scheduler and file systems. As a
next step, an integration of real-time processing and non-real-time processing in the
native system kernel can be expected.






